Merge im2col functor.

Adaptive_data_structure_for_SwitchOrderLayer
hedaoyuan 8 years ago
parent 47eb869197
commit 6efbe2ff43

@ -0,0 +1,215 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "Im2Col.h"
namespace paddle {
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
*/
template <class T>
class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, T> {
public:
void operator()(const T* imData, const TensorShape& imShape, T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[1];
int filterWidth = colShape[2];
int outputHeight = colShape[3];
int outputWidth = colShape[4];
int channelsCol = inputChannels * filterHeight * filterWidth;
for (int c = 0; c < channelsCol; ++c) {
int wOffset = c % filterWidth;
int hOffset = (c / filterWidth) % filterHeight;
int c_im = c / filterWidth / filterHeight;
for (int h = 0; h < outputHeight; ++h) {
for (int w = 0; w < outputWidth; ++w) {
int imRowIdx = h * strideHeight + hOffset;
int imColIdx = w * strideWidth + wOffset;
if ((imRowIdx - paddingHeight) < 0 ||
(imRowIdx - paddingHeight) >= inputHeight ||
(imColIdx - paddingWidth) < 0 ||
(imColIdx - paddingWidth) >= inputWidth) {
colData[(c * outputHeight + h) * outputWidth + w] = T(0);
} else {
imRowIdx += c_im * inputHeight - paddingHeight;
imColIdx -= paddingWidth;
colData[(c * outputHeight + h) * outputWidth + w] =
imData[imRowIdx * inputWidth + imColIdx];
}
}
}
}
}
};
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
*/
template <class T>
class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, T> {
public:
void operator()(T* imData, const TensorShape& imShape, const T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[1];
int filterWidth = colShape[2];
int outputHeight = colShape[3];
int outputWidth = colShape[4];
int channelsCol = inputChannels * filterHeight * filterWidth;
for (int c = 0; c < channelsCol; ++c) {
int wOffset = c % filterWidth;
int hOffset = (c / filterWidth) % filterHeight;
int c_im = c / filterWidth / filterHeight;
for (int h = 0; h < outputHeight; ++h) {
for (int w = 0; w < outputWidth; ++w) {
int imRowIdx = h * strideHeight + hOffset;
int imColIdx = w * strideWidth + wOffset;
if ((imRowIdx - paddingHeight) >= 0 &&
(imRowIdx - paddingHeight) < inputHeight &&
(imColIdx - paddingWidth) >= 0 &&
(imColIdx - paddingWidth) < inputWidth) {
imRowIdx += c_im * inputHeight - paddingHeight;
imColIdx -= paddingWidth;
imData[imRowIdx * inputWidth + imColIdx] +=
colData[(c * outputHeight + h) * outputWidth + w];
}
}
}
}
}
};
template class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, float>;
template class Im2ColFunctor<kCFO, DEVICE_TYPE_CPU, double>;
template class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, float>;
template class Col2ImFunctor<kCFO, DEVICE_TYPE_CPU, double>;
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
*/
template <class T>
class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, T> {
public:
void operator()(const T* imData, const TensorShape& imShape, T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[3];
int filterWidth = colShape[4];
int outputHeight = colShape[0];
int outputWidth = colShape[1];
for (int outputH = 0; outputH < outputHeight; ++outputH) {
for (int outputW = 0; outputW < outputWidth; ++outputW) {
for (int channel = 0; channel < inputChannels; ++channel) {
for (int filterH = 0; filterH < filterHeight; ++filterH) {
for (int filterW = 0; filterW < filterWidth; ++filterW) {
int imRowOffset =
outputH * strideHeight + filterH - paddingHeight;
int imColOffset = outputW * strideWidth + filterW - paddingWidth;
int colDataOffset =
(((outputH * outputWidth + outputW) * inputChannels +
channel) *
filterHeight +
filterH) *
filterWidth +
filterW;
if (imRowOffset < 0 || imRowOffset >= inputHeight ||
imColOffset < 0 || imColOffset >= inputWidth) {
colData[colDataOffset] = float(0);
} else {
int imDataOffset =
(channel * inputHeight + imRowOffset) * inputWidth +
imColOffset;
colData[colDataOffset] = imData[imDataOffset];
}
}
}
}
}
}
}
};
/*
* imShape = [inputChannels, inputHeight, inputWidth]
* colShape =
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
*/
template <class T>
class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, T> {
public:
void operator()(T* imData, const TensorShape& imShape, const T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth) {
int inputChannels = imShape[0];
int inputHeight = imShape[1];
int inputWidth = imShape[2];
int filterHeight = colShape[3];
int filterWidth = colShape[4];
int outputHeight = colShape[0];
int outputWidth = colShape[1];
for (int outputH = 0; outputH < outputHeight; ++outputH) {
for (int outputW = 0; outputW < outputWidth; ++outputW) {
for (int channel = 0; channel < inputChannels; ++channel) {
for (int filterH = 0; filterH < filterHeight; ++filterH) {
for (int filterW = 0; filterW < filterWidth; ++filterW) {
int imRowOffset =
outputH * strideHeight + filterH - paddingHeight;
int imColOffset = outputW * strideWidth + filterW - paddingWidth;
int colDataOffset =
(((outputH * outputWidth + outputW) * inputChannels +
channel) *
filterHeight +
filterH) *
filterWidth +
filterW;
if (imRowOffset >= 0 && imRowOffset < inputHeight &&
imColOffset >= 0 && imColOffset < inputWidth) {
int imDataOffset =
(channel * inputHeight + imRowOffset) * inputWidth +
imColOffset;
imData[imDataOffset] += colData[colDataOffset];
}
}
}
}
}
}
}
};
template class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, float>;
template class Im2ColFunctor<kOCF, DEVICE_TYPE_CPU, double>;
template class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, float>;
template class Col2ImFunctor<kOCF, DEVICE_TYPE_CPU, double>;
} // namespace paddle

File diff suppressed because it is too large Load Diff

@ -0,0 +1,86 @@
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "TensorShape.h"
#include "TensorType.h"
namespace paddle {
/* The storage format of the coldata in the Im2ColFunctor and Col2ImFunctor. */
enum ColFormat { kCFO = 0, kOCF = 1 };
/*
* \brief Converts the image data of three dimensions(CHW) into a colData of
* five dimensions in the Im2ColFunctor calculation,
* And in the Col2ImFunctor calculation, it is reversed.
*
* \param imData Image data.
* \param imShape The shape of imData,
* [inputChannels, inputHeight, inputWidth].
* \param colData Column data.
* \param colShape The shape of colData.
*
* If the template argument Format is kCFO, the shape of colData is:
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
* So, it is easy to reshape into a convolution matrix for convolution
* calculation based on matrix multiplication.
* The shape of convolution matrix is [height, width], where the height is equal
* inputChannels * filterHeight * filterWidth, and the width is equal
* outputHeight * outputWidth.
*
* Reshape:
* shape of colData shape of convolution matrix
* [inputChannels,
* filterHeight,
* filterWidth, ======> [height, width]
* outputHeight,
* outputWidth]
*
* If the template argument Format is kOCF, the shape of colData is:
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
* So, it is easy to reshape into a sequence matrix for rnn calculation.
* The shape of sequence matrix is [seqLength, stepSize], where the seqLength
* is equal outputHeight * outputWidth, and the stepSize is equal
* inputChannels * filterHeight * filterWidth.
*
* Reshape:
* shape of colData shape of sequence matrix
* [outputHeight,
* outputWidth,
* inputChannels, ======> [seqLength, stepSize]
* filterHeight,
* filterWidth]
*
* \note The caller needs to ensure that imShape.inputChannels is equal to
* colShape.inputChannels.
*/
template <ColFormat Format, DeviceType Device, class T>
class Im2ColFunctor {
public:
void operator()(const T* imData, const TensorShape& imShape, T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth);
};
template <ColFormat Format, DeviceType Device, class T>
class Col2ImFunctor {
public:
void operator()(T* imData, const TensorShape& imShape, const T* colData,
const TensorShape& colShape, int strideHeight,
int strideWidth, int paddingHeight, int paddingWidth);
};
} // namespace paddle
Loading…
Cancel
Save