You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/shrink_rnn_memory_op.cc

191 lines
7.8 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/lod_rank_table.h"
#include "paddle/fluid/framework/lod_tensor.h"
#include "paddle/fluid/operators/array_operator.h"
#include "paddle/fluid/operators/math/math_function.h"
namespace paddle {
namespace operators {
class ShrinkRNNMemoryOp : public ArrayOp {
public:
ShrinkRNNMemoryOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: ArrayOp(type, inputs, outputs, attrs) {}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
auto *x_var = scope.FindVar(Input("X"));
PADDLE_ENFORCE(x_var != nullptr, "Input X must be set");
auto &x_tensor = x_var->Get<framework::LoDTensor>();
size_t offset = this->GetOffset(scope, place);
auto *rank_table_var = scope.FindVar(Input("RankTable"));
PADDLE_ENFORCE(rank_table_var != nullptr, "RankTable must be set");
auto &rank_table = rank_table_var->Get<framework::LoDRankTable>();
auto &rank_items = rank_table.items();
int dst_num_rows =
std::lower_bound(rank_items.begin(), rank_items.end(), offset,
[](const framework::LoDRankTable::TableItem &a,
size_t b) { return a.length > b; }) -
rank_items.begin();
auto *out_var = scope.FindVar(Output("Out"));
PADDLE_ENFORCE(out_var != nullptr, "Output(Out) must be set.");
auto &out_tensor = *out_var->GetMutable<framework::LoDTensor>();
size_t height = dst_num_rows;
// do shrink for the top level LoD
if (x_tensor.lod().size() > 0 &&
x_tensor.lod()[0].size() > static_cast<size_t>(dst_num_rows)) {
auto lod_offset = framework::GetSubLoDAndAbsoluteOffset(x_tensor.lod(), 0,
dst_num_rows, 0);
height = lod_offset.second.second;
auto out_lod = out_tensor.mutable_lod();
framework::AppendLoD(out_lod, lod_offset.first);
}
if (dst_num_rows != 0) {
out_tensor.mutable_data(place, x_tensor.type());
auto dev_ctx = platform::DeviceContextPool::Instance().Get(place);
framework::TensorCopy(x_tensor.Slice(0, height), place, *dev_ctx,
&out_tensor);
}
}
};
class ShrinkRNNMemoryOpProtoMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("X", "(LoDTensor) The RNN step memory to be shrank.");
AddInput("RankTable", "(LoDRankTable) The lod_rank_table of dynamic RNN.");
AddInput("I",
"(LoDTensor) The step index. The RNN step memory 'X' will be "
"shrank to match the size of the input of the index'th step.");
AddOutput("Out", "(LoDTensor) The shrank RNN step memory.");
AddComment(R"DOC(
This operator is used to shrink output batch of memory defined in dynamic RNN.
Dynamic RNN is able to handle variable-length sequences, in which, sequences in
a mini-batch are sorted by their lengths first. After that, the longest sequence
becomes the first one in the sorted batch, followed by the second longest, the
third longest, and so on. Dynamic RNN then slices a batch input timestep by
timestep from the sorted input. Once any sequence in the input batch reaches its
end, memory defined in dynamicRNN has to shrink its outputs to adapt to the input
batch size for the next time step.
)DOC");
}
};
class ShrinkRNNMemoryInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"));
PADDLE_ENFORCE(context->HasInput("I"));
PADDLE_ENFORCE(context->HasInput("RankTable"));
context->SetOutputDim("Out", context->GetInputDim("X"));
// For runtime, output's lod is computed according to input's lod, but
// remove the finished sequence. It is set in detail kernel implementation.
if (!context->IsRuntime()) {
context->ShareLoD("X", /*->*/ "Out");
}
}
};
class ShrinkRNNMemoryGradOp : public ArrayOp {
public:
ShrinkRNNMemoryGradOp(const std::string &type,
const framework::VariableNameMap &inputs,
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: ArrayOp(type, inputs, outputs, attrs) {}
private:
void RunImpl(const framework::Scope &scope,
const platform::Place &place) const override {
auto *dout_var = scope.FindVar(Input(framework::GradVarName("Out")));
auto *dx_var = scope.FindVar(Output(framework::GradVarName("X")));
PADDLE_ENFORCE(dx_var != nullptr, "Input Gradient should not be nullptr");
auto *x_var = scope.FindVar(Input("X"));
PADDLE_ENFORCE(x_var != nullptr);
auto &x_tensor = x_var->Get<framework::LoDTensor>();
auto &dx_tensor = *dx_var->GetMutable<framework::LoDTensor>();
dx_tensor.Resize(x_tensor.dims());
dx_tensor.mutable_data(x_tensor.place(), x_tensor.type());
// get device context from pool
platform::DeviceContextPool &pool = platform::DeviceContextPool::Instance();
auto &dev_ctx = *pool.Get(place);
if (dout_var == nullptr) { // dx_tensor fill zero
math::set_constant(dev_ctx, &dx_tensor, 0.0f);
} else {
auto &dout_tensor = dout_var->Get<framework::LoDTensor>();
auto height = dout_tensor.dims()[0];
auto slice = dx_tensor.Slice(0, static_cast<int>(height));
framework::TensorCopy(dout_tensor, dout_tensor.place(), dev_ctx, &slice);
7 years ago
if (dx_tensor.dims()[0] > height) {
auto rest_tensor = dx_tensor.Slice(
7 years ago
static_cast<int>(height), static_cast<int>(dx_tensor.dims()[0]));
math::set_constant(dev_ctx, &rest_tensor, 0.0f);
}
}
dx_tensor.set_lod(x_tensor.lod());
}
};
class ShrinkRNNMemoryGradInferShape : public framework::InferShapeBase {
public:
void operator()(framework::InferShapeContext *context) const override {
PADDLE_ENFORCE(context->HasInput("X"));
PADDLE_ENFORCE(context->HasOutput(framework::GradVarName("X")));
context->ShareDim("X", /*->*/ framework::GradVarName("X"));
context->ShareLoD("X", /*->*/ framework::GradVarName("X"));
}
};
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
template <typename T>
class ShrinkRNNGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> op) const override {
op->SetType("shrink_rnn_memory_grad");
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
op->SetInput("X", this->Input("X"));
op->SetInput(framework::GradVarName("Out"), this->OutputGrad("Out"));
op->SetOutput(framework::GradVarName("X"), this->InputGrad("X"));
op->SetAttrMap(this->Attrs());
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(shrink_rnn_memory, ops::ShrinkRNNMemoryOp,
ops::ShrinkRNNMemoryInferShape,
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
ops::ShrinkRNNMemoryOpProtoMaker,
ops::ShrinkRNNGradOpMaker<paddle::framework::OpDesc>,
ops::ShrinkRNNGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(shrink_rnn_memory_grad, ops::ShrinkRNNMemoryGradOp,
ops::ShrinkRNNMemoryGradInferShape);