Paddle/python/paddle/fluid/tests/unittests/test_cosine_similarity_api.py

141 lines
4.7 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import unittest
import numpy as np
from op_test import OpTest
import paddle
import paddle.nn as nn
import paddle.nn.functional as F
import paddle.fluid.core as core
from paddle.fluid import Program, program_guard, Executor, default_main_program
class TestCosineSimilarityAPI(unittest.TestCase):
def setUp(self):
self.places = [paddle.CPUPlace()]
if core.is_compiled_with_cuda():
self.places.append(paddle.CUDAPlace(0))
def _get_numpy_out(self, x1, x2, axis=1, eps=1e-8):
w12 = np.sum(x1 * x2, axis=axis)
w1 = np.sum(x1 * x1, axis=axis)
w2 = np.sum(x2 * x2, axis=axis)
n12 = np.sqrt(np.clip(w1 * w2, eps * eps, None))
cos_sim = w12 / n12
return cos_sim
def check_static_result(self, place):
paddle.enable_static()
with program_guard(Program(), Program()):
shape = [10, 15]
axis = 1
eps = 1e-8
np.random.seed(0)
np_x1 = np.random.rand(*shape).astype(np.float32)
np_x2 = np.random.rand(*shape).astype(np.float32)
Remove and reorganize the alias of APIs (#27717) * modify cond while_loop to paddle.static.nn.cond * modify crop_tensor to paddle.crop * modify Variable to paddle.static.Variable * remove nn.beam_search, nn.beam_search_decode, nn.gather_tree * remove bpr_loss, center_loss, rank_loss, smooth_l1, teacher_student_sigmoid_loss, edit_distance, sampled_softmax_with_cross_entropy in nn.functional * remove apis in nn.functional.learn_rate.py * remove pool2d, pool3d, adaptive_pool2d, adaptive_pool3d in nn.functional * remove apis in nn.functional.vision * remove erf, soft_relu in nn.functional.activation * remove apis in nn.functional.extension * remove nn.functional.rnn * remove hash from nn.functional.lod * remove row_conv from nn.functional.extension * remove one_hot, pad2d, pad_constant_like from nn.functional.common * remove nn.gather_tree, nn.BilinearTensorProduct, nn.Pool2D, nn.Pad2D * remove apis from optimizer.__init * remove tensor.creation.fill_constant * remove elementwise_mul in nn.functional.common and modify to paddle.multiply * remove tensor.stat.reduce_mean * remove reduce_all, reduce_any in tensor.logic * remove apis in tensor.math * remove apis in tensor.__init__ * remove has_inf, has_nan in tensor.search * remove apis in framework.__init__ * remove apis in paddle.__init__ * remove apis in nn.functional.__init__ * modify removed alias apis to raw api in doc and unittests * fix remove grid_sample bug * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * modify removed alias apis to raw api in doc and unittests * delete alias api relastions in doc * reserve paddle.compat, paddle.sysconfig * remove unittest for paddle.reduce_all, paddle.reduce_any * modify removed alias apis to raw api in doc and unittests * recover paddle.save and paddle.load * resolve conflicts * fix sample code missing paddle.enable_static() bug * fix sample code missing paddle.enable_static() bug * fix to_string sample code error
4 years ago
x1 = paddle.fluid.data(name="x1", shape=shape)
x2 = paddle.fluid.data(name="x2", shape=shape)
result = F.cosine_similarity(x1, x2, axis=axis, eps=eps)
exe = Executor(place)
fetches = exe.run(default_main_program(),
feed={"x1": np_x1,
"x2": np_x2},
fetch_list=[result])
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
self.assertTrue(np.allclose(fetches[0], np_out))
def test_static(self):
for place in self.places:
self.check_static_result(place=place)
def test_dygraph_1(self):
paddle.disable_static()
shape = [10, 15]
axis = 1
eps = 1e-8
np.random.seed(1)
np_x1 = np.random.rand(*shape).astype(np.float32)
np_x2 = np.random.rand(*shape).astype(np.float32)
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
tesnor_x1 = paddle.to_tensor(np_x1)
tesnor_x2 = paddle.to_tensor(np_x2)
y = F.cosine_similarity(tesnor_x1, tesnor_x2, axis=axis, eps=eps)
self.assertTrue(np.allclose(y.numpy(), np_out))
def test_dygraph_2(self):
paddle.disable_static()
shape = [12, 13]
axis = 0
eps = 1e-6
np.random.seed(1)
np_x1 = np.random.rand(*shape).astype(np.float32)
np_x2 = np.random.rand(*shape).astype(np.float32)
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
tesnor_x1 = paddle.to_tensor(np_x1)
tesnor_x2 = paddle.to_tensor(np_x2)
y = F.cosine_similarity(tesnor_x1, tesnor_x2, axis=axis, eps=eps)
self.assertTrue(np.allclose(y.numpy(), np_out))
def test_dygraph_3(self):
paddle.disable_static()
shape1 = [10, 12, 10]
shape2 = [10, 1, 10]
axis = 2
eps = 1e-6
np.random.seed(1)
np_x1 = np.random.rand(*shape1).astype(np.float32)
np_x2 = np.random.rand(*shape2).astype(np.float32)
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
tesnor_x1 = paddle.to_tensor(np_x1)
tesnor_x2 = paddle.to_tensor(np_x2)
y = F.cosine_similarity(tesnor_x1, tesnor_x2, axis=axis, eps=eps)
self.assertTrue(np.allclose(y.numpy(), np_out))
def test_dygraph_4(self):
paddle.disable_static()
shape1 = [23, 12, 1]
shape2 = [23, 1, 10]
axis = 2
eps = 1e-6
np.random.seed(1)
np_x1 = np.random.rand(*shape1).astype(np.float32)
np_x2 = np.random.rand(*shape2).astype(np.float32)
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
cos_sim_func = nn.CosineSimilarity(axis=axis, eps=eps)
tesnor_x1 = paddle.to_tensor(np_x1)
tesnor_x2 = paddle.to_tensor(np_x2)
y = cos_sim_func(tesnor_x1, tesnor_x2)
self.assertTrue(np.allclose(y.numpy(), np_out))
if __name__ == '__main__':
unittest.main()