|
|
|
@ -75,8 +75,8 @@ class TestCosineSimilarityAPI(unittest.TestCase):
|
|
|
|
|
np_x2 = np.random.rand(*shape).astype(np.float32)
|
|
|
|
|
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
|
|
|
|
|
|
|
|
|
|
tesnor_x1 = paddle.to_variable(np_x1)
|
|
|
|
|
tesnor_x2 = paddle.to_variable(np_x2)
|
|
|
|
|
tesnor_x1 = paddle.to_tensor(np_x1)
|
|
|
|
|
tesnor_x2 = paddle.to_tensor(np_x2)
|
|
|
|
|
y = F.cosine_similarity(tesnor_x1, tesnor_x2, axis=axis, eps=eps)
|
|
|
|
|
|
|
|
|
|
self.assertTrue(np.allclose(y.numpy(), np_out))
|
|
|
|
@ -92,8 +92,8 @@ class TestCosineSimilarityAPI(unittest.TestCase):
|
|
|
|
|
np_x2 = np.random.rand(*shape).astype(np.float32)
|
|
|
|
|
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
|
|
|
|
|
|
|
|
|
|
tesnor_x1 = paddle.to_variable(np_x1)
|
|
|
|
|
tesnor_x2 = paddle.to_variable(np_x2)
|
|
|
|
|
tesnor_x1 = paddle.to_tensor(np_x1)
|
|
|
|
|
tesnor_x2 = paddle.to_tensor(np_x2)
|
|
|
|
|
y = F.cosine_similarity(tesnor_x1, tesnor_x2, axis=axis, eps=eps)
|
|
|
|
|
|
|
|
|
|
self.assertTrue(np.allclose(y.numpy(), np_out))
|
|
|
|
@ -110,8 +110,8 @@ class TestCosineSimilarityAPI(unittest.TestCase):
|
|
|
|
|
np_x2 = np.random.rand(*shape2).astype(np.float32)
|
|
|
|
|
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
|
|
|
|
|
|
|
|
|
|
tesnor_x1 = paddle.to_variable(np_x1)
|
|
|
|
|
tesnor_x2 = paddle.to_variable(np_x2)
|
|
|
|
|
tesnor_x1 = paddle.to_tensor(np_x1)
|
|
|
|
|
tesnor_x2 = paddle.to_tensor(np_x2)
|
|
|
|
|
y = F.cosine_similarity(tesnor_x1, tesnor_x2, axis=axis, eps=eps)
|
|
|
|
|
|
|
|
|
|
self.assertTrue(np.allclose(y.numpy(), np_out))
|
|
|
|
@ -129,8 +129,8 @@ class TestCosineSimilarityAPI(unittest.TestCase):
|
|
|
|
|
np_out = self._get_numpy_out(np_x1, np_x2, axis=axis, eps=eps)
|
|
|
|
|
|
|
|
|
|
cos_sim_func = nn.CosineSimilarity(axis=axis, eps=eps)
|
|
|
|
|
tesnor_x1 = paddle.to_variable(np_x1)
|
|
|
|
|
tesnor_x2 = paddle.to_variable(np_x2)
|
|
|
|
|
tesnor_x1 = paddle.to_tensor(np_x1)
|
|
|
|
|
tesnor_x2 = paddle.to_tensor(np_x2)
|
|
|
|
|
y = cos_sim_func(tesnor_x1, tesnor_x2)
|
|
|
|
|
|
|
|
|
|
self.assertTrue(np.allclose(y.numpy(), np_out))
|
|
|
|
|