You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_jit_save_load.py

1217 lines
41 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import os
import pickle
import shutil
import unittest
import numpy as np
import paddle
from paddle.static import InputSpec
import paddle.fluid as fluid
from paddle.fluid.layers.utils import flatten
from paddle.fluid.dygraph import Linear
from paddle.fluid.dygraph import declarative, ProgramTranslator
from paddle.fluid.dygraph.io import INFER_MODEL_SUFFIX, INFER_PARAMS_SUFFIX, INFER_PARAMS_INFO_SUFFIX
from paddle.fluid import unique_name
BATCH_SIZE = 32
BATCH_NUM = 10
SEED = 10
def random_batch_reader(input_size, label_size):
def _get_random_inputs_and_labels(input_size, label_size):
np.random.seed(SEED)
input = np.random.random(size=input_size).astype('float32')
label = np.random.random(size=label_size).astype('int64')
return input, label
def __reader__():
for _ in range(BATCH_NUM):
batch_input, batch_label = _get_random_inputs_and_labels(
[BATCH_SIZE, input_size], [BATCH_SIZE, label_size])
yield batch_input, batch_label
return __reader__
class LinearNet(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(LinearNet, self).__init__()
self._linear = Linear(in_size, out_size)
@declarative
def forward(self, x):
return self._linear(x)
class LinearNetWithInputSpec(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(LinearNetWithInputSpec, self).__init__()
self._linear = Linear(in_size, out_size)
@declarative(input_spec=[InputSpec(shape=[None, 784], dtype='float32')])
def forward(self, x):
return self._linear(x)
class LinearNetNotDeclarative(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(LinearNetNotDeclarative, self).__init__()
self._linear = Linear(in_size, out_size)
def forward(self, x):
return self._linear(x)
class LinerNetWithLabel(paddle.nn.Layer):
def __init__(self, in_size, out_size):
super(LinerNetWithLabel, self).__init__()
self._linear = Linear(in_size, out_size)
@declarative(input_spec=[
InputSpec(
shape=[None, 784], dtype='float32', name="image"), InputSpec(
shape=[None, 1], dtype='int64', name="label")
])
def forward(self, x, label):
out = self._linear(x)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.mean(loss)
return out, avg_loss
class LinerNetWithPruneInput(paddle.nn.Layer):
def __init__(self, in_size, out_size):
super(LinerNetWithPruneInput, self).__init__()
self._linear = Linear(in_size, out_size)
@declarative(input_spec=[
InputSpec(
shape=[None, 784], dtype='float32', name="image"), InputSpec(
shape=[None, 1], dtype='int64', name="label")
])
def forward(self, x, label):
out = self._linear(x)
loss = fluid.layers.cross_entropy(out, label)
avg_loss = fluid.layers.mean(loss)
return out
class LinerNetWithUselessInput(paddle.nn.Layer):
def __init__(self, in_size, out_size):
super(LinerNetWithUselessInput, self).__init__()
self._linear = Linear(in_size, out_size)
@declarative(input_spec=[
InputSpec(
shape=[None, 784], dtype='float32', name="image"), InputSpec(
shape=[None, 1], dtype='int64', name="label")
])
def forward(self, x, label):
out = self._linear(x)
return out
class LinearNetReturnLoss(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(LinearNetReturnLoss, self).__init__()
self._linear = Linear(in_size, out_size)
@declarative
def forward(self, x):
y = self._linear(x)
z = self._linear(y)
loss = fluid.layers.mean(z)
return z, loss
class LinearNetMultiInput(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(LinearNetMultiInput, self).__init__()
self._linear1 = Linear(in_size, out_size)
self._linear2 = Linear(in_size, out_size)
@declarative(input_spec=[
InputSpec(
[None, 8], dtype='float32'), InputSpec(
[None, 8], dtype='float32')
])
def forward(self, x, y):
x_out = self._linear1(x)
y_out = self._linear2(y)
loss = fluid.layers.mean(x_out + y_out)
return x_out, y_out, loss
class MultiLoadingLinearNet(fluid.dygraph.Layer):
def __init__(self, size, model_path):
super(MultiLoadingLinearNet, self).__init__()
self._linear = Linear(size, size)
self._load_linear1 = paddle.jit.load(model_path)
self._load_linear2 = paddle.jit.load(model_path)
@declarative
def forward(self, x):
tmp1 = self._linear(x)
tmp2 = self._load_linear1(tmp1)
tmp3 = self._load_linear2(tmp2)
y = self._linear(tmp3)
return y
class LinearNetReturnHidden(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(LinearNetReturnHidden, self).__init__()
self._linear_1 = Linear(in_size, out_size)
self._linear_2 = Linear(in_size, out_size)
@declarative
def forward(self, x):
y = self._linear_1(x)
z = self._linear_2(y)
loss = fluid.layers.mean(z)
return y, loss
class LinearNetWithNestOut(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(LinearNetWithNestOut, self).__init__()
self._linear_1 = Linear(in_size, out_size)
self._linear_2 = Linear(in_size, out_size)
@declarative
def forward(self, x):
y = self._linear_1(x)
z = self._linear_2(y)
out = y + z
loss = fluid.layers.mean(out)
return y, [(z, loss), out]
class LinearNetWithDictInput(paddle.nn.Layer):
def __init__(self, in_size, out_size):
super(LinearNetWithDictInput, self).__init__()
self._linear = Linear(in_size, out_size)
@paddle.jit.to_static(input_spec=[{
'img': InputSpec(
shape=[None, 8], dtype='float32', name='img')
}, {
'label': InputSpec(
shape=[None, 1], dtype='int64', name='label')
}])
def forward(self, img, label):
out = self._linear(img['img'])
# not return loss to avoid prune output
loss = paddle.nn.functional.cross_entropy(out, label['label'])
return out
class EmptyLayer(paddle.nn.Layer):
def __init__(self):
super(EmptyLayer, self).__init__()
@paddle.jit.to_static
def forward(self, x):
return x
class NoParamLayer(paddle.nn.Layer):
def __init__(self):
super(NoParamLayer, self).__init__()
@paddle.jit.to_static
def forward(self, x, y):
return x + y
class LinearNetWithMultiStaticFunc(fluid.dygraph.Layer):
def __init__(self, in_size, out_size):
super(LinearNetWithMultiStaticFunc, self).__init__()
self._linear_0 = Linear(in_size, out_size)
self._linear_1 = Linear(in_size, out_size)
self._scale = paddle.to_tensor(9.9)
@paddle.jit.to_static
def forward(self, x):
return self._linear_0(x)
@paddle.jit.to_static
def forward_no_param(self, x):
return x
@paddle.jit.to_static
def forward_general(self, x):
return self._linear_0(x) + self._linear_1(x) * self._scale
def train(layer, input_size=784, label_size=1):
# create optimizer
sgd = fluid.optimizer.SGDOptimizer(
learning_rate=0.01, parameter_list=layer.parameters())
# create data loader
train_loader = fluid.io.DataLoader.from_generator(capacity=5)
train_loader.set_batch_generator(
random_batch_reader(input_size, label_size))
# train
for data in train_loader():
img, label = data
label.stop_gradient = True
cost = layer(img)
loss = fluid.layers.cross_entropy(cost, label)
avg_loss = fluid.layers.mean(loss)
avg_loss.backward()
sgd.minimize(avg_loss)
layer.clear_gradients()
return [img], layer, avg_loss
def train_with_label(layer, input_size=784, label_size=1):
# create optimizer
sgd = fluid.optimizer.SGDOptimizer(
learning_rate=0.01, parameter_list=layer.parameters())
# create data loader
train_loader = fluid.io.DataLoader.from_generator(capacity=5)
train_loader.set_batch_generator(
random_batch_reader(input_size, label_size))
# train
for data in train_loader():
img, label = data
label.stop_gradient = True
out, avg_loss = layer(img, label)
avg_loss.backward()
sgd.minimize(avg_loss)
layer.clear_gradients()
return out
class TestJitSaveLoad(unittest.TestCase):
def setUp(self):
self.model_path = "test_jit_save_load/model"
# enable dygraph mode
fluid.enable_dygraph()
# config seed
paddle.seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
def train_and_save_model(self, model_path=None):
layer = LinearNet(784, 1)
example_inputs, layer, _ = train(layer)
final_model_path = model_path if model_path else self.model_path
orig_input_types = [type(x) for x in example_inputs]
paddle.jit.save(
layer=layer, path=final_model_path, input_spec=example_inputs)
new_input_types = [type(x) for x in example_inputs]
self.assertEqual(orig_input_types, new_input_types)
return layer
def test_save_load(self):
# train and save model
train_layer = self.train_and_save_model()
# load model
loaded_layer = paddle.jit.load(self.model_path)
self.load_and_inference(train_layer, loaded_layer)
self.load_dygraph_state_dict(train_layer)
self.load_and_finetune(train_layer, loaded_layer)
def load_and_inference(self, train_layer, infer_layer):
train_layer.eval()
infer_layer.eval()
# inference & compare
x = fluid.dygraph.to_variable(
np.random.random((1, 784)).astype('float32'))
self.assertTrue(
np.array_equal(train_layer(x).numpy(), infer_layer(x).numpy()))
def load_and_finetune(self, train_layer, load_train_layer):
train_layer.train()
load_train_layer.train()
# train & compare
img0, _, train_loss = train(train_layer)
img1, _, load_train_loss = train(load_train_layer)
self.assertTrue(
np.array_equal(train_loss.numpy(), load_train_loss.numpy()))
def load_dygraph_state_dict(self, train_layer):
train_layer.eval()
# construct new model
new_layer = LinearNet(784, 1)
orig_state_dict = new_layer.state_dict()
load_state_dict = paddle.load(self.model_path)
for structured_name in orig_state_dict:
self.assertTrue(structured_name in load_state_dict)
new_layer.set_state_dict(load_state_dict)
new_layer.eval()
# inference & compare
x = fluid.dygraph.to_variable(
np.random.random((1, 784)).astype('float32'))
self.assertTrue(
np.array_equal(train_layer(x).numpy(), new_layer(x).numpy()))
def test_load_dygraph_no_path(self):
model_path = "test_jit_save_load.no_path/model_path"
with self.assertRaises(ValueError):
model_dict, _ = fluid.dygraph.load_dygraph(model_path)
def test_jit_load_model_incomplete(self):
model_path = "test_jit_save_load.remove_variables/model"
self.train_and_save_model(model_path)
# remove `.pdiparams`
var_path = model_path + INFER_PARAMS_SUFFIX
os.remove(var_path)
with self.assertRaises(ValueError):
paddle.jit.load(model_path)
def test_jit_load_no_path(self):
path = "test_jit_save_load.no_path/model_path"
with self.assertRaises(ValueError):
loaded_layer = paddle.jit.load(path)
class TestSaveLoadWithNestOut(unittest.TestCase):
def setUp(self):
# enable dygraph mode
fluid.enable_dygraph()
def test_nest_output(self):
x = fluid.dygraph.to_variable(
np.random.random((4, 8)).astype('float32'))
net = LinearNetWithNestOut(8, 8)
dy_outs = flatten(net(x))
net = declarative(net, input_spec=[InputSpec([None, 8], name='x')])
model_path = "net_with_nest_out/model"
paddle.jit.save(net, model_path)
load_net = paddle.jit.load(model_path)
load_outs = flatten(load_net(x))
self.assertTrue(len(dy_outs) == 4)
for dy_out, load_out in zip(dy_outs, load_outs):
self.assertTrue(np.allclose(dy_out.numpy(), load_out.numpy()))
class TestSaveLoadWithDictInput(unittest.TestCase):
def test_dict_input(self):
# NOTE: This net cannot be executed, it is just
# a special case for exporting models in model validation
# We DO NOT recommend this writing way of Layer
net = LinearNetWithDictInput(8, 8)
# net.forward.concrete_program.inputs:
# (<__main__.LinearNetWithDictInput object at 0x7f2655298a98>,
# {'img': var img : fluid.VarType.LOD_TENSOR.shape(-1, 8).astype(VarType.FP32)},
# {'label': var label : fluid.VarType.LOD_TENSOR.shape(-1, 1).astype(VarType.INT64)})
self.assertEqual(len(net.forward.concrete_program.inputs), 3)
path = "test_jit_save_load_with_dict_input/model"
# prune inputs
paddle.jit.save(
layer=net,
path=path,
input_spec=[{
'img': InputSpec(
shape=[None, 8], dtype='float32', name='img')
}])
img = paddle.randn(shape=[4, 8], dtype='float32')
loaded_net = paddle.jit.load(path)
loaded_out = loaded_net(img)
# loaded_net._input_spec():
# [InputSpec(shape=(-1, 8), dtype=VarType.FP32, name=img)]
self.assertEqual(len(loaded_net._input_spec()), 1)
class TestSaveLoadWithInputSpec(unittest.TestCase):
def setUp(self):
# enable dygraph mode
fluid.enable_dygraph()
def test_with_input_spec(self):
net = LinearNetReturnLoss(8, 8)
# set x.shape = [None, 8]
net.forward = declarative(
net.forward, input_spec=[InputSpec(
[None, 8], name='x')])
model_path = "input_spec.output_spec/model"
# check inputs and outputs
self.assertTrue(len(net.forward.inputs) == 1)
input_x = net.forward.inputs[0]
self.assertTrue(input_x.shape == (-1, 8))
self.assertTrue(input_x.name == 'x')
# 1. prune loss
output_spec = net.forward.outputs[:1]
paddle.jit.save(net, model_path, output_spec=output_spec)
# 2. load to infer
infer_layer = paddle.jit.load(model_path)
x = fluid.dygraph.to_variable(
np.random.random((4, 8)).astype('float32'))
pred = infer_layer(x)
def test_multi_in_out(self):
net = LinearNetMultiInput(8, 8)
model_path = "multi_inout.output_spec1/model"
# 1. check inputs and outputs
self.assertTrue(len(net.forward.inputs) == 2)
input_x = net.forward.inputs[0]
input_y = net.forward.inputs[1]
self.assertTrue(input_x.shape == (-1, 8))
self.assertTrue(input_y.shape == (-1, 8))
# 2. prune loss
output_spec = net.forward.outputs[:2]
paddle.jit.save(net, model_path, output_spec=output_spec)
# 3. load to infer
infer_layer = paddle.jit.load(model_path)
x = fluid.dygraph.to_variable(
np.random.random((4, 8)).astype('float32'))
y = fluid.dygraph.to_variable(
np.random.random((4, 8)).astype('float32'))
# 4. predict
pred_x, pred_y = infer_layer(x, y)
# 1. prune y and loss
model_path = "multi_inout.output_spec2/model"
output_spec = net.forward.outputs[:1]
paddle.jit.save(net, model_path, [input_x], output_spec=output_spec)
# 2. load again
infer_layer2 = paddle.jit.load(model_path)
# 3. predict
pred_xx = infer_layer2(x)
# 4. assert pred_x == pred_xx
self.assertTrue(np.allclose(pred_x.numpy(), pred_xx.numpy()))
class TestJitSaveLoadConfig(unittest.TestCase):
def setUp(self):
# enable dygraph mode
fluid.enable_dygraph()
# config seed
paddle.seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
def test_output_spec(self):
train_layer = LinearNetReturnLoss(8, 8)
adam = fluid.optimizer.AdamOptimizer(
learning_rate=0.1, parameter_list=train_layer.parameters())
x = fluid.dygraph.to_variable(
np.random.random((4, 8)).astype('float32'))
for i in range(10):
out, loss = train_layer(x)
loss.backward()
adam.minimize(loss)
train_layer.clear_gradients()
model_path = "save_load_config.output_spec"
output_spec = [out]
paddle.jit.save(
layer=train_layer,
path=model_path,
input_spec=[x],
output_spec=output_spec)
train_layer.eval()
infer_layer = paddle.jit.load(model_path)
x = fluid.dygraph.to_variable(
np.random.random((4, 8)).astype('float32'))
self.assertTrue(
np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))
def test_save_no_support_config_error(self):
layer = LinearNet(784, 1)
path = "no_support_config_test"
with self.assertRaises(ValueError):
paddle.jit.save(layer=layer, path=path, model_filename="")
def test_load_empty_model_filename_error(self):
path = "error_model_filename_test"
with self.assertRaises(ValueError):
paddle.jit.load(path, model_filename="")
def test_load_empty_params_filename_error(self):
path = "error_params_filename_test"
with self.assertRaises(ValueError):
paddle.jit.load(path, params_filename="")
def test_load_with_no_support_config(self):
path = "no_support_config_test"
with self.assertRaises(ValueError):
paddle.jit.load(path, separate_params=True)
class TestJitMultipleLoading(unittest.TestCase):
def setUp(self):
self.linear_size = 4
self.model_path = "jit_multi_load/model"
# enable dygraph mode
fluid.enable_dygraph()
# config seed
paddle.seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
# train and save base model
self.train_and_save_orig_model()
def train_and_save_orig_model(self):
layer = LinearNet(self.linear_size, self.linear_size)
example_inputs, layer, _ = train(layer, self.linear_size, 1)
paddle.jit.save(
layer=layer, path=self.model_path, input_spec=example_inputs)
def test_load_model_retransform_inference(self):
multi_loaded_layer = MultiLoadingLinearNet(self.linear_size,
self.model_path)
state_dict = multi_loaded_layer.state_dict()
name_set = set()
for _, var in state_dict.items():
self.assertTrue(var.name not in name_set)
name_set.add(var.name)
class TestJitPruneModelAndLoad(unittest.TestCase):
def setUp(self):
self.linear_size = 4
self.model_path = "jit_prune_model_and_load/model"
# enable dygraph mode
fluid.enable_dygraph()
# config seed
paddle.seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
def train_and_save(self):
train_layer = LinearNetReturnHidden(8, 8)
adam = fluid.optimizer.AdamOptimizer(
learning_rate=0.1, parameter_list=train_layer.parameters())
x = fluid.dygraph.to_variable(
np.random.random((4, 8)).astype('float32'))
for i in range(10):
hidden, loss = train_layer(x)
loss.backward()
adam.minimize(loss)
train_layer.clear_gradients()
output_spec = [hidden]
paddle.jit.save(
layer=train_layer,
path=self.model_path,
input_spec=[x],
output_spec=output_spec)
return train_layer
def test_load_pruned_model(self):
train_layer = self.train_and_save()
train_layer.eval()
infer_layer = paddle.jit.load(self.model_path)
x = fluid.dygraph.to_variable(
np.random.random((4, 8)).astype('float32'))
self.assertTrue(
np.array_equal(train_layer(x)[0].numpy(), infer_layer(x).numpy()))
def test_load_var_not_in_extra_var_info(self):
self.train_and_save()
# chage extra var info
var_info_path = self.model_path + INFER_PARAMS_INFO_SUFFIX
with open(var_info_path, 'rb') as f:
extra_var_info = pickle.load(f)
extra_var_info.clear()
with open(var_info_path, 'wb') as f:
pickle.dump(extra_var_info, f, protocol=2)
with self.assertRaises(RuntimeError):
paddle.jit.load(self.model_path)
class TestJitSaveMultiCases(unittest.TestCase):
def setUp(self):
# enable dygraph mode
fluid.enable_dygraph()
# config seed
paddle.seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
def verify_inference_correctness(self,
layer,
model_path,
with_label_and_loss=False,
with_label=False):
layer.eval()
loaded_layer = paddle.jit.load(model_path)
loaded_layer.eval()
# inference & compare
x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
if with_label_and_loss:
y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
pred, _ = layer(x, y)
pred = pred.numpy()
elif with_label:
y = paddle.to_tensor(np.random.random((1, 1)).astype('int64'))
pred = layer(x, y)
pred = pred.numpy()
else:
pred = layer(x).numpy()
loaded_pred = loaded_layer(x).numpy()
self.assertTrue(
np.array_equal(pred, loaded_pred),
msg="Result diff when load and inference:\nlayer result:\n{}\n" \
"loaded layer result:\n{}".format(pred, loaded_pred))
def test_no_prune_to_static_after_train(self):
layer = LinearNet(784, 1)
train(layer)
model_path = "test_no_prune_to_static_after_train/model"
paddle.jit.save(layer, model_path)
self.verify_inference_correctness(layer, model_path)
def test_no_prune_to_static_no_train(self):
layer = LinearNetWithInputSpec(784, 1)
model_path = "test_no_prune_to_static_no_train/model"
paddle.jit.save(layer, model_path)
self.verify_inference_correctness(layer, model_path)
def test_no_prune_no_to_static_after_train(self):
layer = LinearNetNotDeclarative(784, 1)
train(layer)
model_path = "test_no_prune_no_to_static_after_train/model"
paddle.jit.save(
layer,
model_path,
input_spec=[InputSpec(
shape=[None, 784], dtype='float32')])
self.verify_inference_correctness(layer, model_path)
def test_no_prune_no_to_static_after_train_with_examples(self):
layer = LinearNetNotDeclarative(784, 1)
example_inputs, _, _ = train(layer)
model_path = "test_no_prune_no_to_static_after_train_with_examples/model"
paddle.jit.save(layer=layer, path=model_path, input_spec=example_inputs)
self.verify_inference_correctness(layer, model_path)
def test_no_prune_no_to_static_no_train(self):
layer = LinearNetNotDeclarative(784, 1)
model_path = "test_no_prune_no_to_static_no_train/model"
paddle.jit.save(
layer,
model_path,
input_spec=[InputSpec(
shape=[None, 784], dtype='float32')])
self.verify_inference_correctness(layer, model_path)
def test_prune_to_static_after_train(self):
layer = LinerNetWithLabel(784, 1)
out = train_with_label(layer)
model_path = "test_prune_to_static_after_train/model"
paddle.jit.save(
layer,
model_path,
input_spec=[
InputSpec(
shape=[None, 784], dtype='float32', name="image")
],
output_spec=[out])
self.verify_inference_correctness(
layer, model_path, with_label_and_loss=True)
def test_prune_to_static_no_train(self):
layer = LinerNetWithLabel(784, 1)
model_path = "test_prune_to_static_no_train/model"
# TODO: no train, cannot get output_spec var here
# now only can use index
output_spec = layer.forward.outputs[:1]
paddle.jit.save(
layer,
model_path,
input_spec=[
InputSpec(
shape=[None, 784], dtype='float32', name="image")
],
output_spec=output_spec)
self.verify_inference_correctness(
layer, model_path, with_label_and_loss=True)
def test_prune_input_to_static_no_train(self):
layer = LinerNetWithPruneInput(784, 1)
model_path = "test_prune_input_to_static_no_train/model"
paddle.jit.save(
layer,
model_path,
input_spec=[
InputSpec(
shape=[None, 784], dtype='float32', name="image")
])
self.verify_inference_correctness(layer, model_path, with_label=True)
def test_prune_useless_input_to_static_no_train(self):
layer = LinerNetWithUselessInput(784, 1)
model_path = "test_prune_useless_input_to_static_no_train/model"
paddle.jit.save(
layer,
model_path,
input_spec=[
InputSpec(
shape=[None, 784], dtype='float32', name="image")
])
self.verify_inference_correctness(layer, model_path, with_label=True)
def test_no_prune_input_spec_name_warning(self):
layer = LinearNetWithInputSpec(784, 1)
train(layer)
model_path = "test_no_prune_input_spec_name_warning/model"
paddle.jit.save(
layer,
model_path,
input_spec=[InputSpec(
shape=[None, 784], dtype='float32')])
paddle.jit.save(
layer,
model_path,
input_spec=[
InputSpec(
shape=[None, 784], dtype='float32', name='feed_input')
])
self.verify_inference_correctness(layer, model_path)
def test_not_prune_output_spec_name_warning(self):
layer = LinearNet(784, 1)
train(layer)
model_path = "test_not_prune_output_spec_name_warning/model"
out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
paddle.jit.save(layer, model_path, output_spec=[out])
self.verify_inference_correctness(layer, model_path)
def test_prune_input_spec_name_error(self):
layer = LinerNetWithLabel(784, 1)
model_path = "test_prune_input_spec_name_error/model"
with self.assertRaises(ValueError):
paddle.jit.save(
layer,
model_path,
input_spec=[InputSpec(
shape=[None, 784], dtype='float32')])
with self.assertRaises(ValueError):
paddle.jit.save(
layer,
model_path,
input_spec=[
InputSpec(
shape=[None, 784], dtype='float32', name='feed_input')
])
def test_prune_output_spec_name_error(self):
layer = LinerNetWithLabel(784, 1)
train_with_label(layer)
model_path = "test_prune_to_static_after_train/model"
out = paddle.to_tensor(np.random.random((1, 1)).astype('float'))
with self.assertRaises(ValueError):
paddle.jit.save(
layer,
model_path,
input_spec=[
InputSpec(
shape=[None, 784], dtype='float32', name="image")
],
output_spec=[out])
class TestJitSaveLoadEmptyLayer(unittest.TestCase):
def setUp(self):
self.model_path = "jit_save_load_empty_layer/model"
# enable dygraph mode
paddle.disable_static()
def test_save_load_empty_layer(self):
layer = EmptyLayer()
x = paddle.to_tensor(np.random.random((10)).astype('float32'))
out = layer(x)
paddle.jit.save(layer, self.model_path)
load_layer = paddle.jit.load(self.model_path)
load_out = load_layer(x)
self.assertTrue(np.array_equal(out, load_out))
class TestJitSaveLoadNoParamLayer(unittest.TestCase):
def setUp(self):
self.model_path = "jit_save_load_no_param_layer/model"
# enable dygraph mode
paddle.disable_static()
def test_save_load_no_param_layer(self):
layer = NoParamLayer()
x = paddle.to_tensor(np.random.random((5)).astype('float32'))
y = paddle.to_tensor(np.random.random((5)).astype('float32'))
out = layer(x, y)
paddle.jit.save(layer, self.model_path)
load_layer = paddle.jit.load(self.model_path)
load_out = load_layer(x, y)
self.assertTrue(np.array_equal(out, load_out))
class TestJitSaveLoadMultiMethods(unittest.TestCase):
def setUp(self):
# enable dygraph mode
paddle.disable_static()
def test_jit_save_load_inference(self):
model_path_inference = "jit_save_load_multi_methods/model"
IMAGE_SIZE = 224
layer = LinearNetWithMultiStaticFunc(IMAGE_SIZE, 10)
inps = paddle.randn([1, IMAGE_SIZE])
result_origin = {}
for func in dir(layer):
if func.startswith('forward'):
result_origin[func] = getattr(layer, func, None)(inps)
paddle.jit.save(layer, model_path_inference)
load_net = paddle.jit.load(model_path_inference)
for func, result in result_origin.items():
self.assertTrue(
float((result - getattr(load_net, func, None)(inps)).abs().max(
)) < 1e-5)
def test_jit_save_load_multi_methods_inputspec(self):
model_path = 'jit_save_load_multi_methods/model'
layer = LinearNetWithMultiStaticFunc(784, 1)
with self.assertRaises(ValueError):
paddle.jit.save(
layer, model_path, input_spec=[InputSpec(shape=[None, 784])])
def test_parse_name(self):
model_path_inference = "jit_save_load_parse_name/model"
IMAGE_SIZE = 224
layer = LinearNet(IMAGE_SIZE, 1)
inps = paddle.randn([1, IMAGE_SIZE])
layer(inps)
paddle.jit.save(layer, model_path_inference)
paddle.jit.save(layer, model_path_inference + '_v2')
load_net = paddle.jit.load(model_path_inference)
self.assertFalse(hasattr(load_net, 'v2'))
class LayerSaved(paddle.nn.Layer):
def __init__(self, in_size, out_size):
super(LayerSaved, self).__init__()
self.hidden = 100
self._linear_0 = Linear(in_size, self.hidden)
self._linear_1_0 = Linear(self.hidden, self.hidden)
self._linear_1_1 = Linear(self.hidden, self.hidden)
self._linear_2 = Linear(self.hidden, out_size)
self._scale = paddle.to_tensor(9.9)
@paddle.jit.to_static
def forward(self, x):
y = self._linear_0(x)
# Multiple blocks
if x.shape[0] == 1:
y = self._linear_1_0(y)
else:
y += self._linear_1_1(y + self._scale)
return self._linear_2(y)
class LayerLoadFinetune(paddle.nn.Layer):
def __init__(self, in_size, out_size, load_path):
super(LayerLoadFinetune, self).__init__()
# Test duplicate name
self._linear_0 = Linear(in_size, in_size)
self._linear_1_0 = Linear(out_size, in_size)
self._linear_1_1 = Linear(out_size, in_size)
self._linear_2 = Linear(out_size, out_size)
self._scale = paddle.to_tensor(9.9)
# Load multiple times
self._load_l1 = paddle.jit.load(load_path)
self._load_l2 = paddle.jit.load(load_path)
@paddle.jit.to_static
def forward(self, x):
y = self._linear_0(x)
y = self._load_l1(y)
# Multiple blocks
if x.shape[0] == 1:
y = self._linear_1_0(y)
y = self._load_l1(y)
else:
y += self._linear_1_1(x + self._scale)
y = self._load_l2(y)
y = self._linear_1_0(y)
y = self._load_l1(y)
y = self._linear_1_0(y)
# Use the same layer multiple times.
y = self._load_l1(y)
return y
class TestJitSaveLoadSaveWithoutRunning(unittest.TestCase):
def setUp(self):
# enable dygraph mode
paddle.disable_static()
def test_save_load_finetune_load(self):
model_path = "test_jit_save_load_save_without_running/model"
IMAGE_SIZE = 224
inps0 = paddle.randn([1, IMAGE_SIZE])
inps1 = paddle.randn([2, IMAGE_SIZE])
# Use new namespace
with unique_name.guard():
layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
#save
paddle.jit.save(
layer_save,
model_path,
input_spec=[
paddle.static.InputSpec(
shape=[None, IMAGE_SIZE], dtype='float32')
])
result_00 = layer_save(inps0)
result_01 = layer_save(inps1)
#load and save without running
with unique_name.guard():
layer_load = paddle.jit.load(model_path)
paddle.jit.save(
layer_load,
model_path,
input_spec=[
paddle.static.InputSpec(
shape=[None, IMAGE_SIZE], dtype='float32')
])
#reload
layer_reload = paddle.jit.load(model_path)
result_10 = layer_reload(inps0)
result_11 = layer_reload(inps1)
self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
self.assertTrue(float((result_01 - result_11).abs().max()) < 1e-5)
class TestJitSaveLoadFinetuneLoad(unittest.TestCase):
def setUp(self):
# enable dygraph mode
paddle.disable_static()
def test_save_load_finetune_load(self):
model_path = "test_jit_save_load_finetune_load/model"
IMAGE_SIZE = 224
inps0 = paddle.randn([1, IMAGE_SIZE])
inps1 = paddle.randn([2, IMAGE_SIZE])
# Use new namespace
with unique_name.guard():
layer_save = LayerSaved(IMAGE_SIZE, IMAGE_SIZE)
layer_save(inps0)
#save
paddle.jit.save(layer_save, model_path)
#load
with unique_name.guard():
layer_load = LayerLoadFinetune(IMAGE_SIZE, IMAGE_SIZE, model_path)
#train
train(layer_load, input_size=IMAGE_SIZE)
result_00 = layer_load(inps0)
result_01 = layer_load(inps1)
#save
paddle.jit.save(layer_load, model_path)
#load
layer_finetune = paddle.jit.load(model_path)
result_10 = layer_finetune(inps0)
result_11 = layer_finetune(inps1)
self.assertTrue(float((result_00 - result_10).abs().max()) < 1e-5)
self.assertTrue(float(((result_01 - result_11)).abs().max()) < 1e-5)
class TestJitSaveLoadDataParallel(unittest.TestCase):
def verify_inference_correctness(self, layer, path):
layer.eval()
loaded_layer = paddle.jit.load(path)
loaded_layer.eval()
# inference & compare
x = paddle.to_tensor(np.random.random((1, 784)).astype('float32'))
pred = layer(x).numpy()
loaded_pred = loaded_layer(x).numpy()
self.assertTrue(
np.array_equal(pred, loaded_pred),
msg="Result diff when load and inference:\nlayer result:\n{}\n" \
"loaded layer result:\n{}".format(pred, loaded_pred))
def test_jit_save_data_parallel_with_inputspec(self):
layer = LinearNetNotDeclarative(784, 1)
layer = paddle.DataParallel(layer)
path = "jit_save_data_parallel_with_inputspec/model"
paddle.jit.save(
layer=layer, path=path, input_spec=[InputSpec(shape=[None, 784])])
self.verify_inference_correctness(layer, path)
def test_jit_save_data_parallel_with_to_static(self):
layer = LinearNetWithInputSpec(784, 1)
layer = paddle.DataParallel(layer)
path = "jit_save_data_parallel_with_to_static/model"
paddle.jit.save(layer, path)
self.verify_inference_correctness(layer, path)
class InputSepcLayer(paddle.nn.Layer):
'''
A layer with InputSpec to test InputSpec compatibility
'''
@paddle.jit.to_static(input_spec=[
InputSpec(
shape=[None, 8], dtype='float32', name='x'), InputSpec(
shape=[None, 1], dtype='float64', name='y')
])
def forward(self, x, y):
return x, y
class TestInputSpecCompatibility(unittest.TestCase):
def _assert_input_spec_layer_return(self, expect_layer, test_layer):
input_x = paddle.uniform([8, 8], dtype='float32')
input_y = paddle.uniform([8, 1], dtype='float64')
expected_result = expect_layer(input_x, input_y)
test_result = test_layer(input_x, input_y)
np.testing.assert_allclose(expected_result[0].numpy(),
test_result[0].numpy())
np.testing.assert_allclose(expected_result[1].numpy(),
test_result[1].numpy())
def test_jit_save_compatible_input_sepc(self):
layer = InputSepcLayer()
save_dir = "jit_save_compatible_input_spec"
path = save_dir + "/model"
paddle.jit.save(layer=layer, path=path)
no_input_spec_layer = paddle.jit.load(path)
self._assert_input_spec_layer_return(layer, no_input_spec_layer)
shutil.rmtree(save_dir)
paddle.jit.save(
layer=layer,
path=path,
input_spec=[
InputSpec(
shape=[None, 8], dtype='float32', name='x'), InputSpec(
shape=[None, 1], dtype='float64', name='y')
])
same_input_spec_layer = paddle.jit.load(path)
self._assert_input_spec_layer_return(layer, same_input_spec_layer)
shutil.rmtree(save_dir)
paddle.jit.save(
layer=layer,
path=path,
input_spec=[
InputSpec(
shape=[8, 8], dtype='float32'), InputSpec(
shape=[8, -1], dtype='float64')
])
compatible_input_spec_layer = paddle.jit.load(path)
self._assert_input_spec_layer_return(layer, compatible_input_spec_layer)
shutil.rmtree(save_dir)
def test_jit_save_incompatible_input_sepc(self):
layer = InputSepcLayer()
save_dir = "jit_save_compatible_input_spec"
path = save_dir + "/model"
with self.assertRaises(ValueError):
# type mismatch
paddle.jit.save(
layer=layer,
path=path,
input_spec=[
InputSpec(
shape=[None, 8], dtype='float64'), InputSpec(
shape=[None, 1], dtype='float64')
])
with self.assertRaises(ValueError):
# shape len mismatch
paddle.jit.save(
layer=layer,
path=path,
input_spec=[
InputSpec(
shape=[None, 8, 1], dtype='float32'), InputSpec(
shape=[None, 1], dtype='float64')
])
with self.assertRaises(ValueError):
# shape mismatch
paddle.jit.save(
layer=layer,
path=path,
input_spec=[
InputSpec(
shape=[None, 8], dtype='float32'), InputSpec(
shape=[None, 2], dtype='float64')
])
if os.path.exists(save_dir):
shutil.rmtree(save_dir)
if __name__ == '__main__':
unittest.main()