|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import unittest
|
|
|
|
import numpy as np
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
from op_test import OpTest
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.layers as layers
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
|
|
|
|
# Situation 1: starts(list, no tensor), ends(list, no tensor)
|
|
|
|
# 1.1 without attr(decrease)
|
|
|
|
class TestSliceOp(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "slice"
|
|
|
|
self.config()
|
|
|
|
self.inputs = {'Input': self.input}
|
|
|
|
self.outputs = {'Out': self.out}
|
|
|
|
self.attrs = {
|
|
|
|
'axes': self.axes,
|
|
|
|
'starts': self.starts,
|
|
|
|
'ends': self.ends,
|
|
|
|
'infer_flags': self.infer_flags
|
|
|
|
}
|
|
|
|
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [1, 0, 2]
|
|
|
|
self.ends = [3, 3, 4]
|
|
|
|
self.axes = [0, 1, 2]
|
|
|
|
self.infer_flags = [1, 1, 1]
|
|
|
|
self.out = self.input[1:3, 0:3, 2:4, :]
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
def test_check_grad_normal(self):
|
|
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
|
|
|
|
|
|
class TestCase1(TestSliceOp):
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [-3, 0, 2]
|
|
|
|
self.ends = [3, 100, -1]
|
|
|
|
self.axes = [0, 1, 2]
|
|
|
|
self.infer_flags = [1, 1, 1]
|
|
|
|
self.out = self.input[-3:3, 0:100, 2:-1, :]
|
|
|
|
|
|
|
|
|
|
|
|
class TestCase2(TestSliceOp):
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [-3, 0, 2]
|
|
|
|
self.ends = [3, 100, -1]
|
|
|
|
self.axes = [0, 1, 3]
|
|
|
|
self.infer_flags = [1, 1, 1]
|
|
|
|
self.out = self.input[-3:3, 0:100, :, 2:-1]
|
|
|
|
|
|
|
|
|
|
|
|
# 1.2 with attr(decrease)
|
|
|
|
class TestSliceOp_decs_dim(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "slice"
|
|
|
|
self.config()
|
|
|
|
self.inputs = {'Input': self.input}
|
|
|
|
self.outputs = {'Out': self.out}
|
|
|
|
self.attrs = {
|
|
|
|
'axes': self.axes,
|
|
|
|
'starts': self.starts,
|
|
|
|
'ends': self.ends,
|
|
|
|
'infer_flags': self.infer_flags,
|
|
|
|
'decrease_axis': self.decrease_axis,
|
|
|
|
}
|
|
|
|
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [1, 0, 2]
|
|
|
|
self.ends = [2, 3, 4]
|
|
|
|
self.axes = [0, 1, 2]
|
|
|
|
self.decrease_axis = [0]
|
|
|
|
self.infer_flags = [1, 1, 1]
|
|
|
|
self.out = self.input[1, 0:3, 2:4, :]
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
def test_check_grad_normal(self):
|
|
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
|
|
|
|
|
|
class TestSliceOp_decs_dim_2(TestSliceOp_decs_dim):
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [1, 0, 2]
|
|
|
|
self.ends = [2, 1, 4]
|
|
|
|
self.axes = [0, 1, 2]
|
|
|
|
self.decrease_axis = [0, 1]
|
|
|
|
self.infer_flags = [1, 1, 1]
|
|
|
|
self.out = self.input[1, 0, 2:4, :]
|
|
|
|
|
|
|
|
|
|
|
|
class TestSliceOp_decs_dim_3(TestSliceOp_decs_dim):
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [-1, 0, 2]
|
|
|
|
self.ends = [1000000, 1, 4]
|
|
|
|
self.axes = [0, 1, 2]
|
|
|
|
self.decrease_axis = [0, 1]
|
|
|
|
self.infer_flags = [1, 1, 1]
|
|
|
|
self.out = self.input[-1, 0, 2:4, :]
|
|
|
|
|
|
|
|
|
|
|
|
class TestSliceOp_decs_dim_4(TestSliceOp_decs_dim):
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 7]).astype("float64")
|
|
|
|
self.starts = [0, 1, 2, 3]
|
|
|
|
self.ends = [1, 2, 3, 4]
|
|
|
|
self.axes = [0, 1, 2, 3]
|
|
|
|
self.decrease_axis = [0, 1, 2, 3]
|
|
|
|
self.infer_flags = [1, 1, 1]
|
|
|
|
self.out = self.input[0, 1, 2, 3:4]
|
|
|
|
|
|
|
|
|
|
|
|
class TestSliceOp_decs_dim_5(TestSliceOp_decs_dim):
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [-1]
|
|
|
|
self.ends = [1000000]
|
|
|
|
self.axes = [3]
|
|
|
|
self.decrease_axis = [3]
|
|
|
|
self.infer_flags = [1, 1, 1]
|
|
|
|
self.out = self.input[:, :, :, -1]
|
|
|
|
|
|
|
|
|
|
|
|
class TestSliceOp_decs_dim_6(TestSliceOp_decs_dim):
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [0, 1, 2, 3]
|
|
|
|
self.ends = [1, 2, 3, 4]
|
|
|
|
self.axes = [0, 1, 2, 3]
|
|
|
|
self.decrease_axis = [0, 1, 2, 3]
|
|
|
|
self.infer_flags = [1, 1, 1]
|
|
|
|
self.out = self.input[0, 1, 2, 3:4]
|
|
|
|
|
|
|
|
|
|
|
|
# Situation 2: starts(list, have tensor), ends(list, no tensor)
|
|
|
|
# without attr(decrease)
|
|
|
|
class TestSliceOp_starts_ListTensor(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "slice"
|
|
|
|
self.config()
|
|
|
|
|
|
|
|
starts_tensor = []
|
|
|
|
for index, ele in enumerate(self.starts):
|
|
|
|
starts_tensor.append(("x" + str(index), np.ones(
|
|
|
|
(1)).astype('int64') * ele))
|
|
|
|
|
|
|
|
self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
|
|
|
|
self.outputs = {'Out': self.out}
|
|
|
|
self.attrs = {
|
|
|
|
'axes': self.axes,
|
|
|
|
'starts': self.starts_infer,
|
|
|
|
'ends': self.ends,
|
|
|
|
'infer_flags': self.infer_flags
|
|
|
|
}
|
|
|
|
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [1, 0, 2]
|
|
|
|
self.ends = [3, 3, 4]
|
|
|
|
self.axes = [0, 1, 2]
|
|
|
|
self.infer_flags = [-1, 1, -1]
|
|
|
|
self.out = self.input[1:3, 0:3, 2:4, :]
|
|
|
|
|
|
|
|
self.starts_infer = [-1, 0, -1]
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
def test_check_grad_normal(self):
|
|
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
|
|
|
|
|
|
# Situation 2: starts(list, have tensor), ends(list, no tensor)
|
|
|
|
# with attr(decrease)
|
|
|
|
class TestSliceOp_decs_dim_starts_ListTensor(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "slice"
|
|
|
|
self.config()
|
|
|
|
|
|
|
|
starts_tensor = []
|
|
|
|
for index, ele in enumerate(self.starts):
|
|
|
|
starts_tensor.append(("x" + str(index), np.ones(
|
|
|
|
(1)).astype('int32') * ele))
|
|
|
|
|
|
|
|
self.inputs = {'Input': self.input, 'StartsTensorList': starts_tensor}
|
|
|
|
|
|
|
|
self.outputs = {'Out': self.out}
|
|
|
|
self.attrs = {
|
|
|
|
'axes': self.axes,
|
|
|
|
'starts': self.starts_infer,
|
|
|
|
'ends': self.ends,
|
|
|
|
'infer_flags': self.infer_flags,
|
|
|
|
'decrease_axis': self.decrease_axis,
|
|
|
|
}
|
|
|
|
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [1, 0, 2]
|
|
|
|
self.ends = [2, 3, 4]
|
|
|
|
self.axes = [0, 1, 2]
|
|
|
|
self.decrease_axis = [0]
|
|
|
|
self.infer_flags = [1, -1, 1]
|
|
|
|
self.out = self.input[1, 0:3, 2:4, :]
|
|
|
|
|
|
|
|
self.starts_infer = [1, -1, 2]
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
def test_check_grad_normal(self):
|
|
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
|
|
|
|
|
|
class TestSliceOp_decs_dim_5_starts_ListTensor(
|
|
|
|
TestSliceOp_decs_dim_starts_ListTensor):
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [-1]
|
|
|
|
self.ends = [1000000]
|
|
|
|
self.axes = [3]
|
|
|
|
self.decrease_axis = [3]
|
|
|
|
self.infer_flags = [-1]
|
|
|
|
self.out = self.input[:, :, :, -1]
|
|
|
|
|
|
|
|
self.starts_infer = [-1]
|
|
|
|
|
|
|
|
|
|
|
|
# Situation 3: starts(tensor), ends(list, no tensor)
|
|
|
|
# with attr(decrease)
|
|
|
|
class TestSliceOp_decs_dim_starts_OneTensor(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "slice"
|
|
|
|
self.config()
|
|
|
|
self.inputs = {
|
|
|
|
'Input': self.input,
|
|
|
|
"StartsTensor": np.array(
|
|
|
|
self.starts, dtype="int32")
|
|
|
|
}
|
|
|
|
self.outputs = {'Out': self.out}
|
|
|
|
self.attrs = {
|
|
|
|
'axes': self.axes,
|
|
|
|
#'starts': self.starts,
|
|
|
|
'ends': self.ends,
|
|
|
|
'infer_flags': self.infer_flags,
|
|
|
|
'decrease_axis': self.decrease_axis,
|
|
|
|
}
|
|
|
|
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [1, 0, 2]
|
|
|
|
self.ends = [2, 3, 4]
|
|
|
|
self.axes = [0, 1, 2]
|
|
|
|
self.decrease_axis = [0]
|
|
|
|
self.infer_flags = [-1, -1, -1]
|
|
|
|
self.out = self.input[1, 0:3, 2:4, :]
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
def test_check_grad_normal(self):
|
|
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
|
|
|
|
|
|
# Situation 4: starts(tensor), ends(tensor)
|
|
|
|
# without attr(decrease)
|
|
|
|
class TestSliceOp_starts_OneTensor_ends_OneTensor(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "slice"
|
|
|
|
self.config()
|
|
|
|
|
|
|
|
self.inputs = {
|
|
|
|
'Input': self.input,
|
|
|
|
"StartsTensor": np.array(
|
|
|
|
self.starts, dtype="int64"),
|
|
|
|
"EndsTensor": np.array(
|
|
|
|
self.ends, dtype="int32")
|
|
|
|
}
|
|
|
|
self.outputs = {'Out': self.out}
|
|
|
|
self.attrs = {
|
|
|
|
'axes': self.axes,
|
|
|
|
#'starts': self.starts,
|
|
|
|
#'ends': self.ends_infer,
|
|
|
|
'infer_flags': self.infer_flags
|
|
|
|
}
|
|
|
|
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [1, 0, 2]
|
|
|
|
self.ends = [3, 3, 4]
|
|
|
|
self.axes = [0, 1, 2]
|
|
|
|
self.infer_flags = [-1, -1, -1]
|
|
|
|
self.out = self.input[1:3, 0:3, 2:4, :]
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
def test_check_grad_normal(self):
|
|
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
|
|
|
|
|
|
# Situation 5: starts(tensor), ends(tensor)
|
|
|
|
# with attr(decrease)
|
|
|
|
class TestSliceOp_decs_dim_starts_and_ends_OneTensor(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "slice"
|
|
|
|
self.config()
|
|
|
|
self.inputs = {
|
|
|
|
'Input': self.input,
|
|
|
|
"StartsTensor": np.array(
|
|
|
|
self.starts, dtype="int32"),
|
|
|
|
"EndsTensor": np.array(
|
|
|
|
self.ends, dtype="int32")
|
|
|
|
}
|
|
|
|
self.outputs = {'Out': self.out}
|
|
|
|
self.attrs = {
|
|
|
|
'axes': self.axes,
|
|
|
|
#'starts': self.starts,
|
|
|
|
#'ends': self.ends,
|
|
|
|
'infer_flags': self.infer_flags,
|
|
|
|
'decrease_axis': self.decrease_axis,
|
|
|
|
}
|
|
|
|
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [1, 0, 2]
|
|
|
|
self.ends = [2, 1, 4]
|
|
|
|
self.axes = [0, 1, 2]
|
|
|
|
self.decrease_axis = [0, 1]
|
|
|
|
self.infer_flags = [-1, -1, -1]
|
|
|
|
self.out = self.input[1, 0, 2:4, :]
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
def test_check_grad_normal(self):
|
|
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
|
|
|
|
|
|
# Situation 6: starts(tensor), ends(list, have tensor)
|
|
|
|
# without attr(decrease)
|
|
|
|
class TestSliceOp_starts_OneTensor_ends_ListTensor(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "slice"
|
|
|
|
self.config()
|
|
|
|
|
|
|
|
ends_tensor = []
|
|
|
|
for index, ele in enumerate(self.ends):
|
|
|
|
ends_tensor.append(("y" + str(index), np.ones(
|
|
|
|
(1)).astype('int32') * ele))
|
|
|
|
|
|
|
|
self.inputs = {
|
|
|
|
'Input': self.input,
|
|
|
|
"StartsTensor": np.array(
|
|
|
|
self.starts, dtype="int32"),
|
|
|
|
'EndsTensorList': ends_tensor
|
|
|
|
}
|
|
|
|
self.outputs = {'Out': self.out}
|
|
|
|
self.attrs = {
|
|
|
|
'axes': self.axes,
|
|
|
|
#'starts': self.starts,
|
|
|
|
'ends': self.ends_infer,
|
|
|
|
'infer_flags': self.infer_flags
|
|
|
|
}
|
|
|
|
|
|
|
|
def config(self):
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
self.starts = [1, 0, 2]
|
|
|
|
self.ends = [3, 3, 4]
|
|
|
|
self.axes = [0, 1, 2]
|
|
|
|
self.infer_flags = [-1, -1, -1]
|
|
|
|
self.out = self.input[1:3, 0:3, 2:4, :]
|
|
|
|
|
|
|
|
self.ends_infer = [-1, 3, 4]
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
self.check_output()
|
|
|
|
|
|
|
|
def test_check_grad_normal(self):
|
|
|
|
self.check_grad(['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
|
|
|
|
|
|
# Test CUDA float16
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
|
|
"core is not compiled with CUDA")
|
|
|
|
class TestFP16(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "slice"
|
|
|
|
self.config()
|
|
|
|
self.inputs = {'Input': self.input}
|
|
|
|
self.outputs = {'Out': self.out}
|
|
|
|
self.attrs = {
|
|
|
|
'axes': self.axes,
|
|
|
|
'starts': self.starts,
|
|
|
|
'ends': self.ends,
|
|
|
|
'infer_flags': self.infer_flags
|
|
|
|
}
|
|
|
|
|
|
|
|
def config(self):
|
|
|
|
self.dtype = "float16"
|
|
|
|
self.input = np.random.random([3, 4, 5, 6]).astype(self.dtype)
|
|
|
|
self.starts = [-3, 0, 2]
|
|
|
|
self.ends = [3, 100, -1]
|
|
|
|
self.axes = [0, 1, 3]
|
|
|
|
self.out = self.input[-3:3, 0:100, :, 2:-1]
|
|
|
|
self.infer_flags = [1, 1, 1]
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
place = core.CUDAPlace(0)
|
|
|
|
if core.is_float16_supported(place):
|
|
|
|
self.check_output_with_place(place, atol=1e-5)
|
|
|
|
|
|
|
|
def test_check_grad_normal(self):
|
|
|
|
place = core.CUDAPlace(0)
|
|
|
|
if core.is_float16_supported(place):
|
|
|
|
self.check_grad_with_place(
|
|
|
|
place, ['Input'], 'Out', max_relative_error=0.006)
|
|
|
|
|
|
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
|
|
"core is not compiled with CUDA")
|
|
|
|
class TestFP16_2(OpTest):
|
|
|
|
def setUp(self):
|
|
|
|
self.op_type = "slice"
|
|
|
|
self.config()
|
|
|
|
self.inputs = {'Input': self.input}
|
|
|
|
self.outputs = {'Out': self.out}
|
|
|
|
self.attrs = {
|
|
|
|
'axes': self.axes,
|
|
|
|
'starts': self.starts,
|
|
|
|
'ends': self.ends,
|
|
|
|
'infer_flags': self.infer_flags
|
|
|
|
}
|
|
|
|
|
|
|
|
def config(self):
|
|
|
|
self.dtype = "float16"
|
all cases use large shape (#22091)
enhanced ops: unsqueeze, squeeze2, strided_slice, unsqueeze,
unsqueeze2, var_conv_2d, spectral_norm, slice, match_matrix_tensor,
nce, pad, pad_constant_like, filter_by_instag
5 years ago
|
|
|
self.input = np.random.random([3, 4, 10]).astype(self.dtype)
|
|
|
|
self.starts = [0]
|
|
|
|
self.ends = [1]
|
|
|
|
self.axes = [1]
|
|
|
|
self.out = self.input[:, 0:1, :]
|
|
|
|
self.infer_flags = [1]
|
|
|
|
|
|
|
|
def test_check_output(self):
|
|
|
|
place = core.CUDAPlace(0)
|
|
|
|
if core.is_float16_supported(place):
|
|
|
|
self.check_output_with_place(place, atol=1e-5)
|
|
|
|
|
|
|
|
def test_check_grad_normal(self):
|
|
|
|
place = core.CUDAPlace(0)
|
|
|
|
if core.is_float16_supported(place):
|
|
|
|
self.check_grad_with_place(
|
|
|
|
place, ['Input'],
|
|
|
|
'Out',
|
|
|
|
max_relative_error=0.006,
|
|
|
|
numeric_grad_delta=0.5)
|
|
|
|
|
|
|
|
|
|
|
|
# Test python API
|
|
|
|
class TestSliceAPI(unittest.TestCase):
|
|
|
|
def test_1(self):
|
|
|
|
input = np.random.random([3, 4, 5, 6]).astype("float64")
|
|
|
|
minus_1 = fluid.layers.fill_constant([1], "int32", -1)
|
|
|
|
minus_3 = fluid.layers.fill_constant([1], "int64", -3)
|
|
|
|
starts = fluid.layers.data(
|
|
|
|
name='starts', shape=[1, 3], append_batch_size=False)
|
|
|
|
ends = fluid.layers.data(
|
|
|
|
name='ends', shape=[3], append_batch_size=False)
|
|
|
|
|
|
|
|
x = fluid.layers.data(
|
|
|
|
name="x",
|
|
|
|
shape=[3, 4, 5, 6],
|
|
|
|
append_batch_size=False,
|
|
|
|
dtype="float64")
|
|
|
|
|
|
|
|
# value_int64 is greater than 2147483647 which is the max of int32
|
|
|
|
value_int64 = fluid.layers.fill_constant([1], "int64", 2147483648)
|
|
|
|
|
|
|
|
out_1 = fluid.layers.slice(
|
|
|
|
x, axes=[0, 1, 2], starts=[-3, 0, 2], ends=[value_int64, 100, -1])
|
|
|
|
out_2 = fluid.layers.slice(
|
|
|
|
x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, -1])
|
|
|
|
out_3 = fluid.layers.slice(
|
|
|
|
x, axes=[0, 1, 3], starts=[minus_3, 0, 2], ends=[3, 100, minus_1])
|
|
|
|
out_4 = fluid.layers.slice(x, axes=[0, 1, 2], starts=starts, ends=ends)
|
|
|
|
|
|
|
|
out_5 = x[-3:3, 0:100, 2:-1]
|
|
|
|
out_6 = x[minus_3:3, 0:100, :, 2:-1]
|
|
|
|
out_7 = x[minus_1, 0:100, :, 2:minus_1]
|
|
|
|
|
|
|
|
exe = fluid.Executor(place=fluid.CPUPlace())
|
|
|
|
res_1, res_2, res_3, res_4, res_5, res_6, res_7 = exe.run(
|
|
|
|
fluid.default_main_program(),
|
|
|
|
feed={
|
|
|
|
"x": input,
|
|
|
|
'starts': np.array([-3, 0, 2]).astype("int32"),
|
|
|
|
'ends': np.array([3, 100, -1]).astype("int32")
|
|
|
|
},
|
|
|
|
fetch_list=[out_1, out_2, out_3, out_4, out_5, out_6, out_7])
|
|
|
|
|
|
|
|
assert np.array_equal(res_1, input[-3:3, 0:100, 2:-1, :])
|
|
|
|
assert np.array_equal(res_2, input[-3:3, 0:100, :, 2:-1])
|
|
|
|
assert np.array_equal(res_3, input[-3:3, 0:100, :, 2:-1])
|
|
|
|
assert np.array_equal(res_4, input[-3:3, 0:100, 2:-1, :])
|
|
|
|
assert np.array_equal(res_5, input[-3:3, 0:100, 2:-1, :])
|
|
|
|
assert np.array_equal(res_6, input[-3:3, 0:100, :, 2:-1])
|
|
|
|
assert np.array_equal(res_7, input[-1, 0:100, :, 2:-1])
|
|
|
|
|
|
|
|
|
|
|
|
class TestSliceApiWithTensor(unittest.TestCase):
|
|
|
|
def test_starts_ends_is_tensor(self):
|
|
|
|
with paddle.fluid.dygraph.guard():
|
|
|
|
a = paddle.rand(shape=[4, 5, 6], dtype='float32')
|
|
|
|
axes = [0, 1, 2]
|
|
|
|
starts = [-3, 0, 2]
|
|
|
|
ends = [3, 2, 4]
|
|
|
|
a_1 = paddle.slice(
|
|
|
|
a,
|
|
|
|
axes=axes,
|
|
|
|
starts=paddle.to_tensor(
|
|
|
|
starts, dtype='int32'),
|
|
|
|
ends=paddle.to_tensor(
|
|
|
|
ends, dtype='int32'))
|
|
|
|
a_2 = paddle.slice(a, axes=axes, starts=starts, ends=ends)
|
|
|
|
|
|
|
|
self.assertTrue(np.array_equal(a_1.numpy(), a_2.numpy()))
|
|
|
|
|
|
|
|
|
|
|
|
class TestSliceApiWithLoDTensorArray(unittest.TestCase):
|
|
|
|
def setUp(self):
|
|
|
|
self.shape = (3, 4)
|
|
|
|
self.data = np.random.random(size=self.shape).astype('float32')
|
|
|
|
self.idx = 0
|
|
|
|
self.start = 0
|
|
|
|
self.end = 2
|
|
|
|
self.axis = 1
|
|
|
|
|
|
|
|
self.place = fluid.CUDAPlace(0) if fluid.is_compiled_with_cuda(
|
|
|
|
) else fluid.CPUPlace()
|
|
|
|
self.exe = fluid.Executor(self.place)
|
|
|
|
|
|
|
|
def set_program_and_run(self, main_program, case_num):
|
|
|
|
with fluid.program_guard(main_program):
|
|
|
|
x = [
|
|
|
|
fluid.data(
|
|
|
|
name='x0', shape=self.shape, dtype="float32"), fluid.data(
|
|
|
|
name='x1', shape=self.shape, dtype="float32"),
|
|
|
|
fluid.data(
|
|
|
|
name='x2', shape=self.shape, dtype="float32")
|
|
|
|
]
|
|
|
|
|
|
|
|
for each_x in x:
|
|
|
|
each_x.stop_gradient = False
|
|
|
|
|
|
|
|
arr = layers.create_array(dtype="float32")
|
|
|
|
for i in range(3):
|
|
|
|
idx = layers.array_length(arr)
|
|
|
|
arr = layers.array_write(x=x[i], i=idx, array=arr)
|
|
|
|
|
|
|
|
if case_num == 1:
|
|
|
|
self.sliced_arr = output = arr[0]
|
|
|
|
|
|
|
|
elif case_num == 2:
|
|
|
|
end = fluid.layers.array_length(
|
|
|
|
arr) - 1 # dtype of end is int64
|
|
|
|
self.sliced_arr = slice_arr = arr[self.start:end]
|
|
|
|
output, _ = fluid.layers.tensor_array_to_tensor(
|
|
|
|
slice_arr, axis=self.axis, use_stack=True)
|
|
|
|
elif case_num == 3:
|
|
|
|
value_int64 = fluid.layers.fill_constant([1], "int64",
|
|
|
|
2147483648)
|
|
|
|
self.sliced_arr = slice_arr = arr[self.start:value_int64]
|
|
|
|
output, _ = fluid.layers.tensor_array_to_tensor(
|
|
|
|
slice_arr, axis=self.axis, use_stack=True)
|
|
|
|
|
|
|
|
loss = fluid.layers.reduce_sum(output)
|
|
|
|
fluid.backward.append_backward(loss)
|
|
|
|
g_vars = list(
|
|
|
|
map(main_program.global_block().var,
|
|
|
|
[each_x.name + "@GRAD" for each_x in x]))
|
|
|
|
self.out, self.g_x0, self.g_x1, self.g_x2 = \
|
|
|
|
self.exe.run(main_program,
|
|
|
|
feed = {'x0': self.data,
|
|
|
|
'x1': self.data,
|
|
|
|
'x2': self.data},
|
|
|
|
fetch_list=[output] + g_vars)
|
|
|
|
|
|
|
|
def test_case_1(self):
|
|
|
|
main_program = fluid.Program()
|
|
|
|
self.set_program_and_run(main_program, 1)
|
|
|
|
|
|
|
|
self.assertTrue(self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR)
|
|
|
|
self.assertEqual(self.sliced_arr.shape, self.shape)
|
|
|
|
self.assertTrue(np.array_equal(self.out, self.data))
|
|
|
|
self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
|
|
|
|
self.assertTrue(np.array_equal(self.g_x1, np.zeros_like(self.data)))
|
|
|
|
self.assertTrue(np.array_equal(self.g_x2, np.zeros_like(self.data)))
|
|
|
|
|
|
|
|
def test_case_2(self):
|
|
|
|
main_program = fluid.Program()
|
|
|
|
self.set_program_and_run(main_program, 2)
|
|
|
|
|
|
|
|
self.assertTrue(
|
|
|
|
self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
|
|
|
|
self.assertEqual(self.sliced_arr.shape, self.shape)
|
|
|
|
self.assertTrue(
|
|
|
|
np.array_equal(
|
|
|
|
self.out, np.stack(
|
|
|
|
[self.data, self.data], axis=self.axis)))
|
|
|
|
self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
|
|
|
|
self.assertTrue(np.array_equal(self.g_x1, np.ones_like(self.data)))
|
|
|
|
self.assertTrue(np.array_equal(self.g_x2, np.zeros_like(self.data)))
|
|
|
|
|
|
|
|
def test_case_3(self):
|
|
|
|
main_program = fluid.Program()
|
|
|
|
self.set_program_and_run(main_program, 3)
|
|
|
|
|
|
|
|
self.assertTrue(
|
|
|
|
self.sliced_arr.type == core.VarDesc.VarType.LOD_TENSOR_ARRAY)
|
|
|
|
self.assertEqual(self.sliced_arr.shape, self.shape)
|
|
|
|
self.assertTrue(
|
|
|
|
np.array_equal(
|
|
|
|
self.out,
|
|
|
|
np.stack(
|
|
|
|
[self.data, self.data, self.data], axis=self.axis)))
|
|
|
|
self.assertTrue(np.array_equal(self.g_x0, np.ones_like(self.data)))
|
|
|
|
self.assertTrue(np.array_equal(self.g_x1, np.ones_like(self.data)))
|
|
|
|
self.assertTrue(np.array_equal(self.g_x2, np.ones_like(self.data)))
|
|
|
|
|
|
|
|
|
|
|
|
class TestImperativeVarBaseGetItem(unittest.TestCase):
|
|
|
|
def test_getitem_with_long(self):
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
data = np.random.random((2, 80, 16128)).astype('float32')
|
|
|
|
var = fluid.dygraph.to_variable(data)
|
|
|
|
sliced = var[:, 10:, :var.shape[1]] # var.shape[1] is 80L here
|
|
|
|
self.assertEqual(sliced.shape, [2, 70, 80])
|
|
|
|
|
|
|
|
sliced = var[:, var.shape[0]:, var.shape[0]:var.shape[1]]
|
|
|
|
self.assertEqual(sliced.shape, [2, 78, 78])
|
|
|
|
|
|
|
|
def test_getitem_with_float(self):
|
|
|
|
def test_float_in_slice_item():
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
data = np.random.random((2, 80, 16128)).astype('float32')
|
|
|
|
var = fluid.dygraph.to_variable(data)
|
|
|
|
sliced = var[:, 1.1:, :var.shape[1]]
|
|
|
|
|
|
|
|
self.assertRaises(Exception, test_float_in_slice_item)
|
|
|
|
|
|
|
|
def test_float_in_index():
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
data = np.random.random((2, 80, 16128)).astype('float32')
|
|
|
|
var = fluid.dygraph.to_variable(data)
|
|
|
|
sliced = var[1.1]
|
|
|
|
|
|
|
|
self.assertRaises(Exception, test_float_in_index)
|
|
|
|
|
|
|
|
|
|
|
|
@unittest.skipIf(not core.is_compiled_with_cuda(),
|
|
|
|
"core is not compiled with CUDA")
|
|
|
|
class TestImperativeCUDAPinnedInput(unittest.TestCase):
|
|
|
|
def test_input_cuda_pinned_var(self):
|
|
|
|
with fluid.dygraph.guard():
|
|
|
|
data = np.random.random((2, 80, 16128)).astype('float32')
|
|
|
|
var = core.VarBase(
|
|
|
|
value=data,
|
|
|
|
name='',
|
|
|
|
persistable=False,
|
|
|
|
place=fluid.CUDAPinnedPlace(),
|
|
|
|
zero_copy=False)
|
|
|
|
sliced = var[:, 10:, :var.shape[1]]
|
|
|
|
self.assertEqual(sliced.shape, [2, 70, 80])
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|