You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/fluid/tests/unittests/test_translated_layer.py

189 lines
5.6 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import paddle
import paddle.nn as nn
import paddle.optimizer as opt
BATCH_SIZE = 16
BATCH_NUM = 4
EPOCH_NUM = 4
SEED = 10
IMAGE_SIZE = 784
CLASS_NUM = 10
# define a random dataset
class RandomDataset(paddle.io.Dataset):
def __init__(self, num_samples):
self.num_samples = num_samples
def __getitem__(self, idx):
np.random.seed(SEED)
image = np.random.random([IMAGE_SIZE]).astype('float32')
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
return image, label
def __len__(self):
return self.num_samples
class LinearNet(nn.Layer):
def __init__(self):
super(LinearNet, self).__init__()
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
@paddle.jit.to_static(input_spec=[
paddle.static.InputSpec(
shape=[None, IMAGE_SIZE], dtype='float32', name='x')
])
def forward(self, x):
return self._linear(x)
def train(layer, loader, loss_fn, opt):
for epoch_id in range(EPOCH_NUM):
for batch_id, (image, label) in enumerate(loader()):
out = layer(image)
loss = loss_fn(out, label)
loss.backward()
opt.step()
opt.clear_grad()
print("Epoch {} batch {}: loss = {}".format(epoch_id, batch_id,
np.mean(loss.numpy())))
return loss
class TestTranslatedLayer(unittest.TestCase):
def setUp(self):
# enable dygraph mode
place = paddle.CPUPlace()
paddle.disable_static(place)
# config seed
paddle.seed(SEED)
paddle.framework.random._manual_program_seed(SEED)
# create network
self.layer = LinearNet()
self.loss_fn = nn.CrossEntropyLoss()
self.sgd = opt.SGD(learning_rate=0.001,
parameters=self.layer.parameters())
# create data loader
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
self.loader = paddle.io.DataLoader(
dataset,
places=place,
batch_size=BATCH_SIZE,
shuffle=True,
drop_last=True,
num_workers=0)
# train
train(self.layer, self.loader, self.loss_fn, self.sgd)
# save
self.model_path = "linear.example.model"
paddle.jit.save(self.layer, self.model_path)
def test_inference_and_fine_tuning(self):
self.load_and_inference()
self.load_and_fine_tuning()
def load_and_inference(self):
# load
translated_layer = paddle.jit.load(self.model_path)
# inference
x = paddle.randn([1, IMAGE_SIZE], 'float32')
self.layer.eval()
orig_pred = self.layer(x)
translated_layer.eval()
pred = translated_layer(x)
self.assertTrue(np.array_equal(orig_pred.numpy(), pred.numpy()))
def load_and_fine_tuning(self):
# load
translated_layer = paddle.jit.load(self.model_path)
# train original layer continue
self.layer.train()
orig_loss = train(self.layer, self.loader, self.loss_fn, self.sgd)
# fine-tuning
translated_layer.train()
sgd = opt.SGD(learning_rate=0.001,
parameters=translated_layer.parameters())
loss = train(translated_layer, self.loader, self.loss_fn, sgd)
self.assertTrue(
np.array_equal(orig_loss.numpy(), loss.numpy()),
msg="original loss:\n{}\nnew loss:\n{}\n".format(orig_loss.numpy(),
loss.numpy()))
def test_get_program(self):
# load
translated_layer = paddle.jit.load(self.model_path)
program = translated_layer.program()
self.assertTrue(isinstance(program, paddle.static.Program))
def test_get_program_method_not_exists(self):
# load
translated_layer = paddle.jit.load(self.model_path)
with self.assertRaises(ValueError):
program = translated_layer.program('not_exists')
def test_get_input_spec(self):
# load
translated_layer = paddle.jit.load(self.model_path)
expect_spec = [
paddle.static.InputSpec(
shape=[None, IMAGE_SIZE], dtype='float32', name='x')
]
actual_spec = translated_layer._input_spec()
for spec_x, spec_y in zip(expect_spec, actual_spec):
self.assertEqual(spec_x, spec_y)
def test_get_output_spec(self):
# load
translated_layer = paddle.jit.load(self.model_path)
expect_spec = [
paddle.static.InputSpec(
shape=[None, CLASS_NUM],
dtype='float32',
name='translated_layer/scale_0.tmp_1')
]
actual_spec = translated_layer._output_spec()
for spec_x, spec_y in zip(expect_spec, actual_spec):
self.assertEqual(spec_x, spec_y)
if __name__ == '__main__':
unittest.main()