You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
189 lines
5.6 KiB
189 lines
5.6 KiB
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
#
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
# you may not use this file except in compliance with the License.
|
|
# You may obtain a copy of the License at
|
|
#
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
#
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
# See the License for the specific language governing permissions and
|
|
# limitations under the License.
|
|
|
|
from __future__ import print_function
|
|
|
|
import unittest
|
|
import numpy as np
|
|
import paddle
|
|
import paddle.nn as nn
|
|
import paddle.optimizer as opt
|
|
|
|
BATCH_SIZE = 16
|
|
BATCH_NUM = 4
|
|
EPOCH_NUM = 4
|
|
SEED = 10
|
|
|
|
IMAGE_SIZE = 784
|
|
CLASS_NUM = 10
|
|
|
|
|
|
# define a random dataset
|
|
class RandomDataset(paddle.io.Dataset):
|
|
def __init__(self, num_samples):
|
|
self.num_samples = num_samples
|
|
|
|
def __getitem__(self, idx):
|
|
np.random.seed(SEED)
|
|
image = np.random.random([IMAGE_SIZE]).astype('float32')
|
|
label = np.random.randint(0, CLASS_NUM - 1, (1, )).astype('int64')
|
|
return image, label
|
|
|
|
def __len__(self):
|
|
return self.num_samples
|
|
|
|
|
|
class LinearNet(nn.Layer):
|
|
def __init__(self):
|
|
super(LinearNet, self).__init__()
|
|
self._linear = nn.Linear(IMAGE_SIZE, CLASS_NUM)
|
|
|
|
@paddle.jit.to_static(input_spec=[
|
|
paddle.static.InputSpec(
|
|
shape=[None, IMAGE_SIZE], dtype='float32', name='x')
|
|
])
|
|
def forward(self, x):
|
|
return self._linear(x)
|
|
|
|
|
|
def train(layer, loader, loss_fn, opt):
|
|
for epoch_id in range(EPOCH_NUM):
|
|
for batch_id, (image, label) in enumerate(loader()):
|
|
out = layer(image)
|
|
loss = loss_fn(out, label)
|
|
loss.backward()
|
|
opt.step()
|
|
opt.clear_grad()
|
|
print("Epoch {} batch {}: loss = {}".format(epoch_id, batch_id,
|
|
np.mean(loss.numpy())))
|
|
return loss
|
|
|
|
|
|
class TestTranslatedLayer(unittest.TestCase):
|
|
def setUp(self):
|
|
# enable dygraph mode
|
|
place = paddle.CPUPlace()
|
|
paddle.disable_static(place)
|
|
|
|
# config seed
|
|
paddle.seed(SEED)
|
|
paddle.framework.random._manual_program_seed(SEED)
|
|
|
|
# create network
|
|
self.layer = LinearNet()
|
|
self.loss_fn = nn.CrossEntropyLoss()
|
|
self.sgd = opt.SGD(learning_rate=0.001,
|
|
parameters=self.layer.parameters())
|
|
|
|
# create data loader
|
|
dataset = RandomDataset(BATCH_NUM * BATCH_SIZE)
|
|
self.loader = paddle.io.DataLoader(
|
|
dataset,
|
|
places=place,
|
|
batch_size=BATCH_SIZE,
|
|
shuffle=True,
|
|
drop_last=True,
|
|
num_workers=0)
|
|
|
|
# train
|
|
train(self.layer, self.loader, self.loss_fn, self.sgd)
|
|
|
|
# save
|
|
self.model_path = "linear.example.model"
|
|
paddle.jit.save(self.layer, self.model_path)
|
|
|
|
def test_inference_and_fine_tuning(self):
|
|
self.load_and_inference()
|
|
self.load_and_fine_tuning()
|
|
|
|
def load_and_inference(self):
|
|
# load
|
|
translated_layer = paddle.jit.load(self.model_path)
|
|
|
|
# inference
|
|
x = paddle.randn([1, IMAGE_SIZE], 'float32')
|
|
|
|
self.layer.eval()
|
|
orig_pred = self.layer(x)
|
|
|
|
translated_layer.eval()
|
|
pred = translated_layer(x)
|
|
|
|
self.assertTrue(np.array_equal(orig_pred.numpy(), pred.numpy()))
|
|
|
|
def load_and_fine_tuning(self):
|
|
# load
|
|
translated_layer = paddle.jit.load(self.model_path)
|
|
|
|
# train original layer continue
|
|
self.layer.train()
|
|
orig_loss = train(self.layer, self.loader, self.loss_fn, self.sgd)
|
|
|
|
# fine-tuning
|
|
translated_layer.train()
|
|
sgd = opt.SGD(learning_rate=0.001,
|
|
parameters=translated_layer.parameters())
|
|
loss = train(translated_layer, self.loader, self.loss_fn, sgd)
|
|
|
|
self.assertTrue(
|
|
np.array_equal(orig_loss.numpy(), loss.numpy()),
|
|
msg="original loss:\n{}\nnew loss:\n{}\n".format(orig_loss.numpy(),
|
|
loss.numpy()))
|
|
|
|
def test_get_program(self):
|
|
# load
|
|
translated_layer = paddle.jit.load(self.model_path)
|
|
|
|
program = translated_layer.program()
|
|
self.assertTrue(isinstance(program, paddle.static.Program))
|
|
|
|
def test_get_program_method_not_exists(self):
|
|
# load
|
|
translated_layer = paddle.jit.load(self.model_path)
|
|
|
|
with self.assertRaises(ValueError):
|
|
program = translated_layer.program('not_exists')
|
|
|
|
def test_get_input_spec(self):
|
|
# load
|
|
translated_layer = paddle.jit.load(self.model_path)
|
|
|
|
expect_spec = [
|
|
paddle.static.InputSpec(
|
|
shape=[None, IMAGE_SIZE], dtype='float32', name='x')
|
|
]
|
|
actual_spec = translated_layer._input_spec()
|
|
|
|
for spec_x, spec_y in zip(expect_spec, actual_spec):
|
|
self.assertEqual(spec_x, spec_y)
|
|
|
|
def test_get_output_spec(self):
|
|
# load
|
|
translated_layer = paddle.jit.load(self.model_path)
|
|
|
|
expect_spec = [
|
|
paddle.static.InputSpec(
|
|
shape=[None, CLASS_NUM],
|
|
dtype='float32',
|
|
name='translated_layer/scale_0.tmp_1')
|
|
]
|
|
actual_spec = translated_layer._output_spec()
|
|
|
|
for spec_x, spec_y in zip(expect_spec, actual_spec):
|
|
self.assertEqual(spec_x, spec_y)
|
|
|
|
|
|
if __name__ == '__main__':
|
|
unittest.main()
|