You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/math/pooling.h

193 lines
7.3 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/tensor.h"
#include "paddle/fluid/platform/device_context.h"
#include "paddle/fluid/platform/hostdevice.h"
namespace paddle {
namespace operators {
namespace math {
7 years ago
#define FLT_MAX \
__FLT_MAX__ // It might need to be placed in another file, but I'm still
7 years ago
// wondering where to put it.
7 years ago
/*
* \brief Extracting simple operations from pooling.
7 years ago
* Both MaxPool and AvgPool need "initial", "compute" and "finalize"
* operation.
7 years ago
* MaxPool initializes temp variable to the negative maximum to find the
* maximum value in the pooling field.
* AvgPool initializes temp variable to the zero to accumulate all values
7 years ago
* in pool pooling, and finally takes the average.
7 years ago
* MaxPoolGrad and AvgPoolGrad are gradient operations respectively.
*/
template <class T>
class MaxPool {
public:
DEVICE inline T initial() { return static_cast<T>(-FLT_MAX); }
DEVICE inline void compute(T& y, const T& x) { y = y > x ? y : x; }
7 years ago
DEVICE inline void finalize(T& y, const T& pool_field) {}
};
template <class T>
class AvgPool {
public:
DEVICE inline T initial() { return static_cast<T>(0); }
DEVICE inline void compute(T& y, const T& x) { y += x; }
7 years ago
DEVICE inline void finalize(T& y, const T& pool_field) { y /= pool_field; }
};
7 years ago
template <class T>
class MaxPoolGrad {
public:
DEVICE inline void compute(const T& x, const T& y, const T& dy, T& dx,
T scale) {
dx += dy * (x == y);
}
};
template <class T>
class AvgPoolGrad {
public:
DEVICE inline void compute(const T& x, const T& y, const T& dy, T& dx,
T scale) {
dx += (scale * dy);
}
};
7 years ago
/*
* \brief Getting pooling results, and calculating gradient.
*
7 years ago
* In pool2d, all tensors are in NCHW format. Where N is batch size, C is the
* number of channels, H and W is the height and width of feature.
* In pool3d, all tensors are in NCDHW format. Where N is batch size, C is the
* number of channels, D, H and W is the depth, height and width of feature.
7 years ago
*
* In max pooling, it is possible that the pooling region has multiple maximum
7 years ago
* elements. In this case, we should compute the gradient of the first maximum
* element.
7 years ago
* This is different from average pooling. So we rewrite the max_pool_grad:
* MaxPool2dGradFunctor, MaxPool3dGradFunctor.
*/
template <typename DeviceContext, typename PoolProcess, typename T>
class Pool2dFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
std::vector<int>& ksize, std::vector<int>& strides,
std::vector<int>& paddings, PoolProcess pool_compute,
framework::Tensor* output);
};
template <typename DeviceContext, typename PoolProcess, typename T>
class Pool2dGradFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings,
PoolProcess pool_compute, framework::Tensor* input_grad);
};
template <typename DeviceContext, class T>
class MaxPool2dGradFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* input_grad);
};
template <typename DeviceContext, typename PoolProcess, typename T>
class Pool3dFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
std::vector<int>& ksize, std::vector<int>& strides,
std::vector<int>& paddings, PoolProcess pool_compute,
framework::Tensor* output);
};
template <typename DeviceContext, typename PoolProcess, typename T>
class Pool3dGradFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings,
PoolProcess pool_compute, framework::Tensor* input_grad);
};
template <typename DeviceContext, class T>
class MaxPool3dGradFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
const framework::Tensor& output,
const framework::Tensor& output_grad, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* input_grad);
};
7 years ago
/*
* \brief Getting max pooling results and corresponding max index, and
* calculating gradient.
7 years ago
* In up-sampling-pooling, it is necessary to know max element index.
7 years ago
* In pool2d, all tensors are in NCHW format. In pool3d, all tensors are in
* NCDHW format.
*/
template <typename DeviceContext, typename T1, typename T2>
7 years ago
class MaxPool2dWithIndexFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
std::vector<int>& ksize, std::vector<int>& strides,
std::vector<int>& paddings, framework::Tensor* output,
framework::Tensor* mask);
7 years ago
};
template <typename DeviceContext, typename T1, typename T2>
7 years ago
class MaxPool2dWithIndexGradFunctor {
public:
void operator()(const DeviceContext& context,
7 years ago
const framework::Tensor& output_grad,
const framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* input_grad);
7 years ago
};
template <typename DeviceContext, typename T1, typename T2>
7 years ago
class MaxPool3dWithIndexFunctor {
public:
void operator()(const DeviceContext& context, const framework::Tensor& input,
std::vector<int>& ksize, std::vector<int>& strides,
std::vector<int>& paddings, framework::Tensor* output,
framework::Tensor* mask);
7 years ago
};
template <typename DeviceContext, typename T1, typename T2>
7 years ago
class MaxPool3dWithIndexGradFunctor {
public:
void operator()(const DeviceContext& context,
7 years ago
const framework::Tensor& output_grad,
const framework::Tensor& mask, std::vector<int>& ksize,
std::vector<int>& strides, std::vector<int>& paddings,
framework::Tensor* input_grad);
7 years ago
};
7 years ago
} // namespace math
} // namespace operators
} // namespace paddle