You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/crop_op.h

207 lines
7.7 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
8 years ago
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
8 years ago
http://www.apache.org/licenses/LICENSE-2.0
8 years ago
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
8 years ago
#pragma once
#include <utility>
#include <vector>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/strided_memcpy.h"
8 years ago
namespace paddle {
namespace operators { // Internal
8 years ago
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using framework::Tensor;
7 years ago
static std::vector<int> GetOffsets(const framework::ExecutionContext& ctx) {
std::vector<int> res;
int rank = ctx.Input<Tensor>("X")->dims().size();
if (ctx.HasInput("Offsets")) {
PADDLE_ENFORCE_EQ(ctx.Attr<std::vector<int>>("offsets").empty(), true,
platform::errors::InvalidArgument(
"Input 'Offsets' and attribute 'offsets' "
"should not be used at the same time for CropOp."));
7 years ago
const auto* offsets_tensor = ctx.Input<Tensor>("Offsets");
PADDLE_ENFORCE_EQ(offsets_tensor->dims().size(), 1,
platform::errors::InvalidArgument(
"The number of dimensions of input 'Offsets' for "
"CropOp must be 1, but the value received is %d.",
offsets_tensor->dims().size()));
7 years ago
PADDLE_ENFORCE_EQ(
rank, offsets_tensor->dims()[0],
platform::errors::InvalidArgument("The number of elements (%d) for "
"input 'Offsets' must be equal to "
"the number of dimensions (%d) "
"of the input tensor.",
offsets_tensor->dims()[0], rank));
7 years ago
const int* offsets_data;
framework::Tensor cpu_tmp_tensor;
if (platform::is_cpu_place(offsets_tensor->place())) {
offsets_data = offsets_tensor->data<int>();
} else {
framework::TensorCopySync(*offsets_tensor, platform::CPUPlace(),
&cpu_tmp_tensor);
offsets_data = cpu_tmp_tensor.data<int>();
7 years ago
}
7 years ago
res = std::vector<int>(offsets_data, offsets_data + rank);
7 years ago
} else {
res = ctx.Attr<std::vector<int>>("offsets");
PADDLE_ENFORCE_EQ(
rank, static_cast<int>(res.size()),
platform::errors::InvalidArgument("The number of elements (%d) for "
"input 'Offsets' must be equal to "
"the number of dimensions (%d) "
"of the input tensor.",
res.size(), rank));
7 years ago
}
return res;
}
template <typename DeviceContext, typename T, size_t D>
void CropFunction(const framework::ExecutionContext& context) {
auto* x = context.Input<Tensor>("X");
auto* out = context.Output<Tensor>("Out");
auto out_dims = out->dims();
if (out_dims[0] == -1) {
out_dims[0] = x->dims()[0];
}
out->mutable_data<T>(out_dims, context.GetPlace());
auto x_stride = framework::stride(x->dims());
auto offsets = GetOffsets(context);
int64_t offset = 0;
for (size_t i = 0; i < offsets.size(); ++i) {
offset += (x_stride[i] * offsets[i]);
}
auto x_tensor = EigenTensor<T, D>::From(*x);
auto out_tensor = EigenTensor<T, D>::From(*out);
Eigen::array<int, D> e_offsets;
Eigen::array<int, D> e_shape;
for (size_t i = 0; i < D; ++i) {
e_offsets[i] = offsets[i];
e_shape[i] = out->dims()[i];
}
auto& place =
*context.template device_context<DeviceContext>().eigen_device();
out_tensor.device(place) = x_tensor.slice(e_offsets, e_shape);
}
template <typename DeviceContext, typename T>
class CropKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
int rank = context.Input<Tensor>("X")->dims().size();
PADDLE_ENFORCE_GE(
rank, 1,
platform::errors::InvalidArgument(
"The number of dimensions of the Input(X) for CropOp must be "
"greater than or equal to 1, but the value received is %d.",
rank));
PADDLE_ENFORCE_LE(
rank, 6,
platform::errors::InvalidArgument(
"The number of dimensions of the Input(X) for CropOp must be "
"less than or equal to 6, but the value received is %d.",
rank));
switch (rank) {
case 1:
CropFunction<DeviceContext, T, 1>(context);
break;
case 2:
CropFunction<DeviceContext, T, 2>(context);
break;
case 3:
CropFunction<DeviceContext, T, 3>(context);
break;
case 4:
CropFunction<DeviceContext, T, 4>(context);
break;
case 5:
CropFunction<DeviceContext, T, 5>(context);
break;
case 6:
CropFunction<DeviceContext, T, 6>(context);
break;
}
}
};
8 years ago
template <typename DeviceContext, typename T, size_t D>
8 years ago
void CropGradFunction(const framework::ExecutionContext& context) {
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
auto* x = context.Input<Tensor>("X");
if (d_x != nullptr) {
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
d_x->mutable_data<T>(x->dims(), context.GetPlace());
7 years ago
auto offsets = GetOffsets(context);
Eigen::array<std::pair<int, int>, D> paddings;
for (size_t i = 0; i < D; ++i) {
paddings[i].first = offsets[i];
paddings[i].second = d_x->dims()[i] - d_out->dims()[i] - offsets[i];
}
auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
d_x_tensor.device(
*context.template device_context<DeviceContext>().eigen_device()) =
d_out_tensor.pad(paddings, 0);
8 years ago
}
}
template <typename DeviceContext, typename T>
class CropGradKernel : public framework::OpKernel<T> {
8 years ago
public:
void Compute(const framework::ExecutionContext& context) const override {
size_t rank =
context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
PADDLE_ENFORCE_GE(
rank, 1, platform::errors::InvalidArgument(
"The number of dimensions of the input 'Out@GRAD' for "
"CropGrad must be greater than or equal "
"to 1, but the value received is %d.",
rank));
PADDLE_ENFORCE_LE(
rank, 6, platform::errors::InvalidArgument(
"The number of dimensions of the input 'Out@GRAD' for "
"CropGrad must be less than or equal "
"to 6, but the value received is %d.",
rank));
switch (rank) {
8 years ago
case 1:
CropGradFunction<DeviceContext, T, 1>(context);
8 years ago
break;
case 2:
CropGradFunction<DeviceContext, T, 2>(context);
8 years ago
break;
case 3:
CropGradFunction<DeviceContext, T, 3>(context);
8 years ago
break;
case 4:
CropGradFunction<DeviceContext, T, 4>(context);
8 years ago
break;
case 5:
CropGradFunction<DeviceContext, T, 5>(context);
8 years ago
break;
case 6:
CropGradFunction<DeviceContext, T, 6>(context);
8 years ago
break;
}
}
};
} // namespace operators
} // namespace paddle