You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/pybind/pybind.cc

505 lines
20 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
7 years ago
#include "paddle/pybind/protobuf.h"
#include "paddle/framework/backward.h"
#include "paddle/framework/executor.h"
#include "paddle/framework/feed_fetch_method.h"
#include "paddle/framework/framework.pb.h"
#include "paddle/framework/lod_tensor.h"
#include "paddle/framework/prune.h"
#include "paddle/framework/selected_rows.h"
#include "paddle/framework/tensor_array.h"
8 years ago
#include "paddle/operators/cond_op.h"
#include "paddle/operators/dynamic_recurrent_op.h"
#include "paddle/operators/net_op.h"
#include "paddle/operators/recurrent_op.h"
8 years ago
#include "paddle/platform/enforce.h"
#include "paddle/platform/place.h"
#include "paddle/pybind/exception.h"
7 years ago
#include "paddle/pybind/pybind.h"
#include "paddle/pybind/tensor_py.h"
#include "paddle/string/to_string.h"
7 years ago
#ifdef PADDLE_WITH_CUDA
#include "paddle/operators/nccl/nccl_gpu_common.h"
#include "paddle/platform/gpu_info.h"
7 years ago
#endif
namespace paddle {
namespace pybind {
static size_t UniqueIntegerGenerator() {
static std::atomic<size_t> generator;
return generator.fetch_add(1);
}
bool IsCompileGPU() {
#ifndef PADDLE_WITH_CUDA
return false;
#else
return true;
#endif
}
PYBIND11_PLUGIN(core) {
py::module m("core", "C++ core of PaddlePaddle");
// using framework in this function. Since it is inside a function, it will
// not cause namespace pollution.
using namespace paddle::framework; // NOLINT
BindException(m);
py::class_<Tensor>(m, "Tensor", py::buffer_protocol())
.def_buffer(
[](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
.def("get_dims",
[](const Tensor &self) { return vectorize(self.dims()); })
.def("set_dims",
[](Tensor &self, const std::vector<int64_t> &dim) {
self.Resize(make_ddim(dim));
})
.def("alloc_float",
8 years ago
[](Tensor &self, paddle::platform::GPUPlace &place) {
self.mutable_data<float>(place);
})
.def("alloc_float",
8 years ago
[](Tensor &self, paddle::platform::CPUPlace &place) {
self.mutable_data<float>(place);
})
.def("alloc_int",
8 years ago
[](Tensor &self, paddle::platform::CPUPlace &place) {
self.mutable_data<int>(place);
})
.def("alloc_int",
8 years ago
[](Tensor &self, paddle::platform::GPUPlace &place) {
self.mutable_data<int>(place);
})
8 years ago
.def("set", PyCPUTensorSetFromArray<float>)
.def("set", PyCPUTensorSetFromArray<int>)
.def("set", PyCPUTensorSetFromArray<double>)
.def("set", PyCPUTensorSetFromArray<int64_t>)
#ifdef PADDLE_WITH_CUDA
8 years ago
.def("set", PyCUDATensorSetFromArray<float>)
.def("set", PyCUDATensorSetFromArray<int>)
.def("set", PyCUDATensorSetFromArray<double>)
.def("set", PyCUDATensorSetFromArray<int64_t>)
#endif
.def("shape", [](Tensor &self) { return vectorize(self.dims()); })
.def("set_float_element", TensorSetElement<float>)
.def("get_float_element", TensorGetElement<float>)
.def("set_double_element", TensorSetElement<double>)
.def("get_double_element", TensorGetElement<double>)
.def("dtype", [](Tensor &self) { return ToDataType(self.type()); });
py::class_<LoDTensor, Tensor>(m, "LoDTensor")
.def_buffer(
[](Tensor &self) -> py::buffer_info { return CastToPyBuffer(self); })
.def(
"__init__",
[](LoDTensor &instance, const std::vector<std::vector<size_t>> &lod) {
#ifndef PADDLE_WITH_CUDA
new (&instance) LoDTensor(lod);
#else
LoD new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
new (&instance) LoDTensor(new_lod);
#endif
})
.def("__init__", [](LoDTensor &instance) { new (&instance) LoDTensor(); })
.def("set_lod",
[](LoDTensor &self, const std::vector<std::vector<size_t>> &lod) {
#ifndef PADDLE_WITH_CUDA
self.set_lod(lod);
#else
LoD new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
self.set_lod(new_lod);
#endif
})
.def("lod", [](LoDTensor &self) -> std::vector<std::vector<size_t>> {
#ifndef PADDLE_WITH_CUDA
return self.lod();
#else
auto lod = self.lod();
std::vector<std::vector<size_t>> new_lod;
new_lod.reserve(lod.size());
std::transform(lod.begin(), lod.end(), std::back_inserter(new_lod),
[](Vector<size_t> item) ->
std::vector<size_t> {
std::vector<size_t> v;
v.reserve(item.size());
std::copy(item.begin(), item.end(), std::back_inserter(v));
return v;
});
return new_lod;
#endif
});
py::class_<SelectedRows>(m, "SelectedRows")
.def("__init__",
[](SelectedRows &instance) { new (&instance) SelectedRows(); })
.def("__init__",
[](SelectedRows &instance, const std::vector<int64_t> rows,
const int64_t &height) {
new (&instance) SelectedRows(rows, height);
})
.def("get_tensor",
[](SelectedRows &self) { return self.mutable_value(); },
py::return_value_policy::reference)
.def("set_height", &SelectedRows::set_height)
.def("height", &SelectedRows::height)
.def("set_rows",
[](SelectedRows &self, std::vector<int64_t> rows) {
#ifndef PADDLE_WITH_CUDA
self.set_rows(rows);
#else
Vector<int64_t> new_rows(rows);
self.set_rows(new_rows);
#endif
})
.def("rows", [](SelectedRows &self) {
#ifndef PADDLE_WITH_CUDA
return self.rows();
#else
auto rows = self.rows();
std::vector<int64_t> new_rows;
new_rows.reserve(rows.size());
std::copy(rows.begin(), rows.end(), std::back_inserter(new_rows));
return new_rows;
#endif
});
py::class_<Variable>(m, "Variable", R"DOC(Variable Class.
All parameter, weight, gradient are variables in Paddle.
)DOC")
.def("is_int", [](const Variable &var) { return var.IsType<int>(); })
.def("set_int",
[](Variable &var, int val) -> void { *var.GetMutable<int>() = val; })
.def("get_int", [](const Variable &var) -> int { return var.Get<int>(); })
.def("is_float", [](const Variable &var) { return var.IsType<float>(); })
.def("set_float",
[](Variable &var, float val) -> void {
*var.GetMutable<float>() = val;
})
.def("get_float",
[](const Variable &var) -> float { return var.Get<float>(); })
.def("get_tensor",
[](Variable &self) -> LoDTensor * {
return self.GetMutable<LoDTensor>();
},
py::return_value_policy::reference)
.def("get_selected_rows",
[](Variable &self) -> SelectedRows * {
return self.GetMutable<SelectedRows>();
},
py::return_value_policy::reference)
#ifdef PADDLE_WITH_CUDA
.def("get_communicator",
[](Variable &self) -> platform::Communicator * {
return self.GetMutable<platform::Communicator>();
},
py::return_value_policy::reference)
#endif
RecurrentOp implementation (#2890) * add rnn op interfaces * add Run * rename state -> memory * change state -> memory * make compilable * add .cc * init test * add op fake implementation * add CreateStepNet and CreateScopes implementation. * add TODO list * init memory attributes. * add LinkMemories * add PlainNet fake implementation * Use std::shared_ptr<Scope> in the OpRunContext. * add test * disable mutable_data * finist segmentInput function * enable mutable_data with a trick * RNNOp test. * enable LinkMemories with mutable_data * update SegmentInput function with comments * finish ConcatOutput function * reformat inputs and attributes boot_memories * Refine unit test. * Refine unit test. * modify inlinks. * add OpDesc to Net * fix bug and update unit test. * move step scopes from inputs to outputs * fix merge conflict, update SegmentInput function * add RecurrentOpProtoAndCheckerMaker. * clean the codes * Abstract GetStepScopes and GetMaxSeqLen function * refine LinkMemories * Refine code and add some comments. * add backward core * update for develop branch. * add forward core * add forward algorithm * Add RecurrentGradientAlgorithm implenmention. * use CopyFrom and Slice function in RecurrentOp * add unit test for LinkMemories. * fix unit test. * use the latest tensor.h, solve conflict * add maker * move SegmentInput and ConcatOutput to details nameplace * unit test for RecurrentGradientAlgorithm. * apply OperatorBase * apply net operator. * move memorys to attributes * add RecurrentGradientOp * open test unit test in recurrent_network_op_test. * revert some files. * add RecurrentArgument and Link struct to simplify member variable. * rename. * move recurrent_op from framework to operators * add RecurrentGradientOp Init * fix name * fix Link.interal/external name * use namespace operators instead of framework * clean the code * use the latest add_op and mul_op, don't test backward now * Remove ScopePtr and OperatorPtr * add get_net to pybind * add test_recurrent_op.py * add random into gen_tensor * update to develop branch and refine some code. * add some comments.
8 years ago
.def("get_net",
[](Variable &self) -> operators::NetOp * {
return self.GetMutable<operators::NetOp>();
},
py::return_value_policy::reference);
py::class_<Scope>(m, "Scope", "")
.def("var",
[](Scope &self, const std::string &name) -> Variable * {
return self.Var(name);
},
py::return_value_policy::reference)
.def("find_var", &Scope::FindVar, py::return_value_policy::reference)
.def(py::init<>())
.def("new_scope", [](Scope &self) -> Scope * { return &self.NewScope(); },
py::return_value_policy::reference)
.def("drop_kids", &Scope::DropKids);
//! @note: Be careful! PyBind will return std::string as an unicode, not
//! Python str. If you want a str object, you should cast them in Python.
m.def("get_all_op_protos", []() -> std::vector<py::bytes> {
std::vector<py::bytes> ret_values;
for (auto &iter : OpInfoMap::Instance().map()) {
auto &info = iter.second;
if (info.HasOpProtoAndChecker()) {
std::string str;
PADDLE_ENFORCE(
info.Proto().SerializeToString(&str),
"Serialize OpProto Error. This could be a bug of Paddle.");
ret_values.emplace_back(str);
}
}
8 years ago
return ret_values;
});
m.def("prune", [](const ProgramDescBind &origin,
const std::vector<std::array<size_t, 2>> &targets) {
ProgramDescBind prog_with_targets(origin);
for (const auto &t : targets) {
prog_with_targets.Block(t[0])->Op(t[1])->MarkAsTarget();
}
ProgramDesc pruned_desc;
Prune(*prog_with_targets.Proto(), &pruned_desc);
return new ProgramDescBind(pruned_desc);
});
m.def_submodule(
"var_names",
"The module will return special predefined variable name in Paddle")
.def("empty", []() { return kEmptyVarName; })
.def("temp", []() { return kTempVarName; });
8 years ago
// clang-format off
py::class_<paddle::platform::DeviceContext>(m, "DeviceContext")
.def_static("create",
[](paddle::platform::CPUPlace& place)
8 years ago
-> paddle::platform::DeviceContext* {
return new paddle::platform::CPUDeviceContext();
})
.def_static("create",
[](paddle::platform::GPUPlace& place)
-> paddle::platform::DeviceContext* {
#ifndef PADDLE_WITH_CUDA
PADDLE_THROW("GPUPlace is not supported in CPU device.");
#else
return new paddle::platform::CUDADeviceContext(place);
8 years ago
#endif
});
// clang-format on
#ifdef PADDLE_WITH_CUDA
py::class_<platform::Communicator>(m, "Communicator").def(py::init<>());
#endif
py::class_<platform::GPUPlace>(m, "GPUPlace")
.def(py::init<int>())
.def("__str__", string::to_string<const platform::GPUPlace &>);
py::class_<paddle::platform::CPUPlace>(m, "CPUPlace")
.def(py::init<>())
.def("__str__", string::to_string<const platform::CPUPlace &>);
py::class_<platform::Place>(m, "Place")
.def(py::init<>())
.def("set_place",
[](platform::Place &self, const platform::CPUPlace &cpu_place) {
self = cpu_place;
})
.def("set_place",
[](platform::Place &self, const platform::GPUPlace &gpu_place) {
self = gpu_place;
});
py::class_<OperatorBase>(m, "Operator")
.def_static("create",
[](py::bytes protobin) {
OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s",
desc.InitializationErrorString());
return OpRegistry::CreateOp(desc, nullptr);
})
.def("backward",
[](const OperatorBase &forwardOp,
const std::unordered_set<std::string> &no_grad_vars) {
return Backward(forwardOp, no_grad_vars).release();
})
.def("run",
[](OperatorBase &self, const Scope &scope,
const platform::DeviceContext &dev_ctx) {
self.Run(scope, dev_ctx);
dev_ctx.Wait();
})
.def("type",
[](const OperatorBase &op) -> std::string { return op.Type(); })
.def("outputs",
[](const OperatorBase &op)
-> std::map<std::string, std::vector<std::string>> {
return op.Outputs();
})
8 years ago
.def("output_vars",
[](const OperatorBase &op) { return op.OutputVars(true); })
.def("inputs", [](const OperatorBase &op) { return op.Inputs(); })
8 years ago
.def("input_vars", [](const OperatorBase &op) { return op.InputVars(); })
.def("__str__", &OperatorBase::DebugString)
.def("no_intermediate_outputs",
[](const OperatorBase &op) { return op.OutputVars(false); })
.def("support_gpu", &OperatorBase::SupportGPU);
py::class_<operators::NetOp, OperatorBase>(m, "Net")
.def_static("create",
[]() -> operators::NetOp * {
auto *retv = new operators::NetOp;
retv->SetType("plain_net");
return retv;
})
.def("append_op", [](operators::NetOp &self,
const OperatorBase &op) { self.AppendOp(op); })
.def("complete_add_op", &operators::NetOp::CompleteAddOp)
.def("complete_add_op", [](std::shared_ptr<operators::NetOp> &self) {
self->CompleteAddOp();
});
py::class_<framework::TensorArray>(m, "TensorArray")
.def("__init__",
[](TensorArray &instance) { new (&instance) TensorArray(); })
.def("read",
[](TensorArray &self, size_t index) { return self.Read(index); })
.def("write", [](TensorArray &self, size_t index,
LoDTensor &value) { self.Write(index, value); })
.def("write_shared",
[](TensorArray &self, size_t index, const LoDTensor &value) {
self.WriteShared(index, value);
})
.def("size", [](TensorArray &self) { return self.size(); })
.def("pack",
[](TensorArray &self, size_t level,
const std::vector<std::vector<size_t>> &meta_info,
const std::vector<std::vector<size_t>> &lod) {
std::vector<DySeqMeta> meta;
for (auto &info : meta_info) {
PADDLE_ENFORCE_EQ(info.size(), 3UL);
meta.emplace_back(info[0], info[1], info[2]);
}
#ifndef PADDLE_WITH_CUDA
return self.Pack(level, meta, lod);
#else
LoD new_lod;
new_lod.reserve(lod.size());
std::copy(lod.begin(), lod.end(), std::back_inserter(new_lod));
return self.Pack(level, meta, new_lod);
#endif
})
.def("unpack",
[](TensorArray &self, const LoDTensor &source, int level,
bool length_descend) {
auto metas = self.Unpack(source, level, length_descend);
std::vector<std::vector<size_t>> meta_info;
for (auto meta : metas) {
meta_info.emplace_back(
std::vector<size_t>({meta.begin, meta.end, meta.ori_idx}));
}
return meta_info;
})
.def("stack", [](TensorArray &self) { return self.Stack(); })
.def("unstack",
[](TensorArray &self, const LoDTensor &source) {
return self.Unstack(source);
})
.def("unstack_shared", [](TensorArray &self, const LoDTensor &source) {
return self.UnstackShared(source);
});
// recurrent_op
py::class_<operators::RecurrentOp, OperatorBase>(m, "RecurrentOp")
.def_static(
"create",
[](py::bytes protobin) -> operators::RecurrentOp * {
OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s",
desc.InitializationErrorString());
auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
return static_cast<operators::RecurrentOp *>(rnn_op.release());
})
.def("set_stepnet", [](operators::RecurrentOp &self,
const operators::NetOp &net) -> void {
self.set_stepnet(net.Clone());
});
py::class_<operators::DynamicRecurrentOp, OperatorBase>(m,
"DynamicRecurrentOp")
.def_static("create",
[](py::bytes protobin) -> operators::DynamicRecurrentOp * {
OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s",
desc.InitializationErrorString());
auto rnn_op = OpRegistry::CreateOp(desc, nullptr);
return static_cast<operators::DynamicRecurrentOp *>(
rnn_op.release());
})
.def("set_step_unit",
[](operators::DynamicRecurrentOp &self, const operators::NetOp &net)
-> void { self.rnn.SetStepUnit(net.Clone()); })
.def("get_state",
[](operators::DynamicRecurrentOp &self, const std::string &name)
-> const TensorArray & { return self.rnn.state(name); })
.def("get_step_input",
[](operators::DynamicRecurrentOp &self, const std::string &name)
-> const TensorArray & { return self.rnn.step_input(name); })
.def("get_step_output",
[](operators::DynamicRecurrentOp &self, const std::string &name)
-> const TensorArray & { return self.rnn.step_output(name); });
8 years ago
// cond_op
py::class_<operators::CondOp, OperatorBase>(m, "CondOp")
.def_static("create",
[](py::bytes protobin) -> operators::CondOp * {
OpDesc desc;
PADDLE_ENFORCE(desc.ParsePartialFromString(protobin),
"Cannot parse user input to OpDesc");
PADDLE_ENFORCE(desc.IsInitialized(),
"User OpDesc is not initialized, reason %s",
desc.InitializationErrorString());
auto cond_op = OpRegistry::CreateOp(desc, nullptr);
8 years ago
return static_cast<operators::CondOp *>(cond_op.release());
})
.def("set_truenet",
[](operators::CondOp &self, const operators::NetOp &net) -> void {
self.set_truenet(net.Clone());
})
.def("set_falsenet",
[](operators::CondOp &self, const operators::NetOp &net) -> void {
self.set_falsenet(net.Clone());
});
py::class_<framework::Executor>(m, "Executor")
.def(py::init<std::vector<platform::Place> &>())
.def("run", [](Executor &self, ProgramDescBind *program_bind,
Scope *scope, int block_id) {
self.Run(*program_bind->Proto(), scope, block_id);
});
m.def("unique_integer", UniqueIntegerGenerator);
m.def("is_compile_gpu", IsCompileGPU);
m.def("set_feed_variable", framework::SetFeedVariable);
m.def("get_fetch_variable", framework::GetFetchVariable);
7 years ago
BindProgramDesc(m);
BindBlockDesc(m);
BindVarDsec(m);
BindOpDesc(m);
7 years ago
m.def("op_support_gpu", OpSupportGPU);
7 years ago
#ifdef PADDLE_WITH_CUDA
m.def("get_cuda_device_count", platform::GetCUDADeviceCount);
7 years ago
#endif
return m.ptr();
}
} // namespace pybind
} // namespace paddle