|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
from . import core
|
|
|
|
from .wrapped_decorator import signature_safe_contextmanager
|
|
|
|
import os
|
|
|
|
import six
|
|
|
|
|
|
|
|
__all__ = [
|
|
|
|
'cuda_profiler', 'reset_profiler', 'profiler', 'start_profiler',
|
|
|
|
'stop_profiler'
|
|
|
|
]
|
|
|
|
|
|
|
|
NVPROF_CONFIG = [
|
|
|
|
"gpustarttimestamp",
|
|
|
|
"gpuendtimestamp",
|
|
|
|
"gridsize3d",
|
|
|
|
"threadblocksize",
|
|
|
|
"streamid",
|
|
|
|
"enableonstart 0",
|
|
|
|
"conckerneltrace",
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
@signature_safe_contextmanager
|
|
|
|
def cuda_profiler(output_file, output_mode=None, config=None):
|
|
|
|
"""
|
|
|
|
The CUDA profiler.
|
|
|
|
|
|
|
|
This fuctions is used to profile CUDA program by CUDA runtime application
|
|
|
|
programming interface. The profiling result will be written into
|
|
|
|
`output_file`. The users can set the output mode by `output_mode` argument
|
|
|
|
and set the nvidia profiling config by `config` argument.
|
|
|
|
|
|
|
|
After getting the profiling result file, users can use
|
|
|
|
`NVIDIA Visual Profiler <https://developer.nvidia.com/nvidia-visual-profiler>`_
|
|
|
|
to load this output file to visualize results.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
output_file (str) : The output file name, the result will be
|
|
|
|
written into this file.
|
|
|
|
output_mode (str, optional) : The output mode has Key-Value pair format ('kvp')
|
|
|
|
and Comma separated values format ('csv', default).
|
|
|
|
config (list<str>, optional) : Nvidia profile config. Default config is
|
|
|
|
['gpustarttimestamp', 'gpuendtimestamp', 'gridsize3d', 'threadblocksize',
|
|
|
|
'streamid', 'enableonstart 0', 'conckerneltrace']. For more details, please
|
|
|
|
refer to `Compute Command Line Profiler User Guide <https://developer.download.nvidia.cn/compute/DevZone/docs/html/C/doc/Compute_Command_Line_Profiler_User_Guide.pdf>`_ .
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If `output_mode` is not in ['kvp', 'csv'].
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.profiler as profiler
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
epoc = 8
|
|
|
|
dshape = [4, 3, 28, 28]
|
|
|
|
data = fluid.data(name='data', shape=[None, 3, 28, 28], dtype='float32')
|
|
|
|
conv = fluid.layers.conv2d(data, 20, 3, stride=[1, 1], padding=[1, 1])
|
|
|
|
|
|
|
|
place = fluid.CUDAPlace(0)
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
|
|
|
output_file = 'cuda_profiler.txt'
|
|
|
|
with profiler.cuda_profiler(output_file, 'csv') as nvprof:
|
|
|
|
for i in range(epoc):
|
|
|
|
input = np.random.random(dshape).astype('float32')
|
|
|
|
exe.run(fluid.default_main_program(), feed={'data': input})
|
|
|
|
# then use NVIDIA Visual Profiler (nvvp) to load this output file
|
|
|
|
# to visualize results.
|
|
|
|
"""
|
|
|
|
if output_mode is None:
|
|
|
|
output_mode = 'csv'
|
|
|
|
if output_mode not in ['kvp', 'csv']:
|
|
|
|
raise ValueError("The output mode must be 'kvp' or 'csv'.")
|
|
|
|
config = NVPROF_CONFIG if config is None else config
|
|
|
|
config_file = 'nvprof_config_file'
|
|
|
|
with open(config_file, 'wb') as fp:
|
|
|
|
fp.writelines([six.b("%s\n" % item) for item in config])
|
|
|
|
core.nvprof_init(output_file, output_mode, config_file)
|
|
|
|
# Enables profiler collection by the active CUDA profiling tool.
|
|
|
|
core.nvprof_start()
|
|
|
|
try:
|
|
|
|
yield
|
|
|
|
# Disables profiler collection.
|
|
|
|
finally:
|
|
|
|
core.nvprof_stop()
|
|
|
|
os.remove(config_file)
|
|
|
|
|
|
|
|
|
|
|
|
def reset_profiler():
|
|
|
|
"""
|
|
|
|
Clear the previous time record. This interface does not work for
|
|
|
|
`fluid.profiler.cuda_profiler`, it only works for
|
|
|
|
`fluid.profiler.start_profiler`, `fluid.profiler.stop_profiler`,
|
|
|
|
and `fluid.profiler.profiler`.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.profiler as profiler
|
|
|
|
with profiler.profiler('CPU', 'total', '/tmp/profile'):
|
|
|
|
for iter in range(10):
|
|
|
|
if iter == 2:
|
|
|
|
profiler.reset_profiler()
|
|
|
|
# ...
|
|
|
|
"""
|
|
|
|
core.reset_profiler()
|
|
|
|
|
|
|
|
|
|
|
|
def start_profiler(state, tracer_option='Default'):
|
|
|
|
"""
|
|
|
|
Enable the profiler. Uers can use `fluid.profiler.start_profiler` and
|
|
|
|
`fluid.profiler.stop_profiler` to profile, which is equal to the usage
|
|
|
|
of `fluid.profiler.profiler` interface.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
state (str) : The profiling state, which should be one of 'CPU', 'GPU'
|
|
|
|
or 'All'. 'CPU' means only profiling CPU; 'GPU' means profiling
|
|
|
|
both CPU and GPU; 'All' means profiling both CPU and GPU, and
|
|
|
|
generates timeline as well.
|
|
|
|
tracer_option (str, optional) : tracer_option can be one of ['Default', 'OpDetail', 'AllOpDetail'], it
|
|
|
|
can control the profile level and print the different level profile result. `Default` option print
|
|
|
|
the different Op type profiling result and the `OpDetail` option print the detail profiling
|
|
|
|
result of different op types such as compute and data transform, `AllOpDetail` option
|
|
|
|
print the detail profiling result of different op name same as `OpDetail`.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If `state` is not in ['CPU', 'GPU', 'All'] or `tracer_option`
|
|
|
|
is not in ['Default', 'OpDetail', 'AllOpDetail'].
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.profiler as profiler
|
|
|
|
|
|
|
|
profiler.start_profiler('GPU')
|
|
|
|
for iter in range(10):
|
|
|
|
if iter == 2:
|
|
|
|
profiler.reset_profiler()
|
|
|
|
# except each iteration
|
|
|
|
profiler.stop_profiler('total', '/tmp/profile')
|
|
|
|
|
|
|
|
profiler.start_profiler('GPU', "OpDetail")
|
|
|
|
for iter in range(10):
|
|
|
|
if iter == 2:
|
|
|
|
profiler.reset_profiler()
|
|
|
|
# except each iteration
|
|
|
|
profiler.stop_profiler('total', '/tmp/profile')
|
|
|
|
"""
|
|
|
|
if core.is_profiler_enabled():
|
|
|
|
return
|
|
|
|
if state not in ['CPU', 'GPU', "All"]:
|
|
|
|
raise ValueError("The state must be 'CPU' or 'GPU' or 'All'.")
|
|
|
|
if state == "GPU":
|
|
|
|
prof_state = core.ProfilerState.kCUDA
|
|
|
|
elif state == "CPU":
|
|
|
|
prof_state = core.ProfilerState.kCPU
|
|
|
|
else:
|
|
|
|
prof_state = core.ProfilerState.kAll
|
|
|
|
|
|
|
|
if tracer_option not in ['Default', 'OpDetail', 'AllOpDetail']:
|
|
|
|
raise ValueError(
|
|
|
|
"tracer option must be 'Default', 'OpDetail', 'AllOpDetail'.")
|
|
|
|
if tracer_option == "Default":
|
|
|
|
prof_tracer_option = core.TracerOption.kDefault
|
|
|
|
elif tracer_option == "OpDetail":
|
|
|
|
prof_tracer_option = core.TracerOption.kOpDetail
|
|
|
|
else:
|
|
|
|
prof_tracer_option = core.TracerOption.kAllOpDetail
|
|
|
|
|
|
|
|
core.set_tracer_option(prof_tracer_option)
|
|
|
|
core.enable_profiler(prof_state)
|
|
|
|
|
|
|
|
|
|
|
|
def stop_profiler(sorted_key=None, profile_path='/tmp/profile'):
|
|
|
|
"""
|
|
|
|
Stop the profiler. Uers can use `fluid.profiler.start_profiler` and
|
|
|
|
`fluid.profiler.stop_profiler` to profile, which is equal to the usage
|
|
|
|
of `fluid.profiler.profiler` interface.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
sorted_key (str, optional) : The order of profiling results, which
|
|
|
|
should be one of None, 'calls', 'total', 'max', 'min' or 'ave'.
|
|
|
|
Default is None, means the profiling results will be printed
|
|
|
|
in the order of first end time of events.
|
|
|
|
The `calls` means sorting by the number of calls.
|
|
|
|
The `total` means sorting by the total execution time.
|
|
|
|
The `max` means sorting by the maximum execution time.
|
|
|
|
The `min` means sorting by the minimum execution time.
|
|
|
|
The `ave` means sorting by the average execution time.
|
|
|
|
and write it into `profile_path`. The default profile_path is `/tmp/profile`.
|
|
|
|
profile_path (str, optional) : If state == 'All', it will generate timeline,
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If `sorted_key` is not in
|
|
|
|
['calls', 'total', 'max', 'min', 'ave'].
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.profiler as profiler
|
|
|
|
|
|
|
|
profiler.start_profiler('GPU')
|
|
|
|
for iter in range(10):
|
|
|
|
if iter == 2:
|
|
|
|
profiler.reset_profiler()
|
|
|
|
# except each iteration
|
|
|
|
profiler.stop_profiler('total', '/tmp/profile')
|
|
|
|
"""
|
|
|
|
if not core.is_profiler_enabled():
|
|
|
|
return
|
|
|
|
sorted_key = 'default' if sorted_key is None else sorted_key
|
|
|
|
if sorted_key not in ['default', 'calls', 'total', 'max', 'min', 'ave']:
|
|
|
|
raise ValueError("The sorted_key must be None or in 'calls', 'total', "
|
|
|
|
"'max', 'min' and 'ave'")
|
|
|
|
key_map = {
|
|
|
|
'default': core.EventSortingKey.kDefault,
|
|
|
|
'calls': core.EventSortingKey.kCalls,
|
|
|
|
'total': core.EventSortingKey.kTotal,
|
|
|
|
'max': core.EventSortingKey.kMax,
|
|
|
|
'min': core.EventSortingKey.kMin,
|
|
|
|
'ave': core.EventSortingKey.kAve,
|
|
|
|
}
|
|
|
|
# TODO(qingqing) : redirect C++ ostream to Python stream.
|
|
|
|
# with core.ostream_redirect(stdout=True, stderr=True):
|
|
|
|
core.disable_profiler(key_map[sorted_key], profile_path)
|
|
|
|
|
|
|
|
|
|
|
|
@signature_safe_contextmanager
|
|
|
|
def profiler(state,
|
|
|
|
sorted_key=None,
|
|
|
|
profile_path='/tmp/profile',
|
|
|
|
tracer_option='Default'):
|
|
|
|
"""
|
|
|
|
The profiler interface. Different from `fluid.profiler.cuda_profiler`,
|
|
|
|
this profiler can be used to profile both CPU and GPU program.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
state (str) : The profiling state, which should be one of 'CPU', 'GPU'
|
|
|
|
or 'All'. 'CPU' means only profiling CPU; 'GPU' means profiling
|
|
|
|
both CPU and GPU; 'All' means profiling both CPU and GPU, and
|
|
|
|
generates timeline as well.
|
|
|
|
sorted_key (str, optional) : The order of profiling results, which
|
|
|
|
should be one of None, 'calls', 'total', 'max', 'min' or 'ave'.
|
|
|
|
Default is None, means the profiling results will be printed
|
|
|
|
in the order of first end time of events.
|
|
|
|
The `calls` means sorting by the number of calls.
|
|
|
|
The `total` means sorting by the total execution time.
|
|
|
|
The `max` means sorting by the maximum execution time.
|
|
|
|
The `min` means sorting by the minimum execution time.
|
|
|
|
The `ave` means sorting by the average execution time.
|
|
|
|
profile_path (str, optional) : If state == 'All', it will generate timeline,
|
|
|
|
and write it into `profile_path`. The default profile_path is `/tmp/profile`.
|
|
|
|
tracer_option (str, optional) : tracer_option can be one of ['Default', 'OpDetail', 'AllOpDetail'], it
|
|
|
|
can control the profile level and print the different level profile result. `Default` option print
|
|
|
|
the different Op type profiling result and the `OpDetail` option print the detail profiling
|
|
|
|
result of different op types such as compute and data transform, `AllOpDetail` option
|
|
|
|
print the detail profiling result of different op name same as `OpDetail`.
|
|
|
|
|
|
|
|
Raises:
|
|
|
|
ValueError: If `state` is not in ['CPU', 'GPU', 'All']. If `sorted_key` is
|
|
|
|
not in ['calls', 'total', 'max', 'min', 'ave'].
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.profiler as profiler
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
epoc = 8
|
|
|
|
dshape = [4, 3, 28, 28]
|
|
|
|
data = fluid.data(name='data', shape=[None, 3, 28, 28], dtype='float32')
|
|
|
|
conv = fluid.layers.conv2d(data, 20, 3, stride=[1, 1], padding=[1, 1])
|
|
|
|
|
|
|
|
place = fluid.CPUPlace()
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
exe.run(fluid.default_startup_program())
|
|
|
|
|
|
|
|
with profiler.profiler('CPU', 'total', '/tmp/profile', 'Default') as prof:
|
|
|
|
for i in range(epoc):
|
|
|
|
input = np.random.random(dshape).astype('float32')
|
|
|
|
exe.run(fluid.default_main_program(), feed={'data': input})
|
|
|
|
|
|
|
|
Examples Results:
|
|
|
|
|
|
|
|
.. code-block:: text
|
|
|
|
|
|
|
|
#### Examples Results ####
|
|
|
|
#### 1) sorted_key = 'total', 'calls', 'max', 'min', 'ave' ####
|
|
|
|
# The only difference in 5 sorted_key results is the following sentence:
|
|
|
|
# "Sorted by number of xxx in descending order in the same thread."
|
|
|
|
# The reason is that in this example, above 5 columns are already sorted.
|
|
|
|
-------------------------> Profiling Report <-------------------------
|
|
|
|
|
|
|
|
Place: CPU
|
|
|
|
Time unit: ms
|
|
|
|
Sorted by total time in descending order in the same thread
|
|
|
|
#Sorted by number of calls in descending order in the same thread
|
|
|
|
#Sorted by number of max in descending order in the same thread
|
|
|
|
#Sorted by number of min in descending order in the same thread
|
|
|
|
#Sorted by number of avg in descending order in the same thread
|
|
|
|
|
|
|
|
Event Calls Total Min. Max. Ave. Ratio.
|
|
|
|
thread0::conv2d 8 129.406 0.304303 127.076 16.1758 0.983319
|
|
|
|
thread0::elementwise_add 8 2.11865 0.193486 0.525592 0.264832 0.016099
|
|
|
|
thread0::feed 8 0.076649 0.006834 0.024616 0.00958112 0.000582432
|
|
|
|
|
|
|
|
#### 2) sorted_key = None ####
|
|
|
|
# Since the profiling results are printed in the order of first end time of Ops,
|
|
|
|
# the printed order is feed->conv2d->elementwise_add
|
|
|
|
-------------------------> Profiling Report <-------------------------
|
|
|
|
|
|
|
|
Place: CPU
|
|
|
|
Time unit: ms
|
|
|
|
Sorted by event first end time in descending order in the same thread
|
|
|
|
|
|
|
|
Event Calls Total Min. Max. Ave. Ratio.
|
|
|
|
thread0::feed 8 0.077419 0.006608 0.023349 0.00967738 0.00775934
|
|
|
|
thread0::conv2d 8 7.93456 0.291385 5.63342 0.99182 0.795243
|
|
|
|
thread0::elementwise_add 8 1.96555 0.191884 0.518004 0.245693 0.196998
|
|
|
|
"""
|
|
|
|
start_profiler(state, tracer_option)
|
|
|
|
try:
|
|
|
|
yield
|
|
|
|
finally:
|
|
|
|
stop_profiler(sorted_key, profile_path)
|