You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/box_coder_op.cu

149 lines
6.7 KiB

/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
7 years ago
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/box_coder_op.h"
#include "paddle/fluid/platform/cuda_helper.h"
7 years ago
namespace paddle {
namespace operators {
template <typename T>
__global__ void EncodeCenterSizeKernel(const T* prior_box_data,
const T* prior_box_var_data,
const T* target_box_data, const int row,
const int col, const int len,
T* output) {
7 years ago
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < row * col) {
const int row_idx = idx / col;
const int col_idx = idx % col;
T prior_box_width =
prior_box_data[col_idx * len + 2] - prior_box_data[col_idx * len];
7 years ago
T prior_box_height =
prior_box_data[col_idx * len + 3] - prior_box_data[col_idx * len + 1];
7 years ago
T prior_box_center_x =
(prior_box_data[col_idx * len + 2] + prior_box_data[col_idx * len]) / 2;
T prior_box_center_y = (prior_box_data[col_idx * len + 3] +
prior_box_data[col_idx * len + 1]) /
2;
7 years ago
T target_box_center_x =
(target_box_data[row_idx * len + 2] + target_box_data[row_idx * len]) /
7 years ago
2;
T target_box_center_y = (target_box_data[row_idx * len + 3] +
target_box_data[row_idx * len + 1]) /
2;
7 years ago
T target_box_width =
target_box_data[row_idx * len + 2] - target_box_data[row_idx * len];
7 years ago
T target_box_height =
target_box_data[row_idx * len + 3] - target_box_data[row_idx * len + 1];
7 years ago
output[idx * len] = (target_box_center_x - prior_box_center_x) /
prior_box_width / prior_box_var_data[col_idx * len];
output[idx * len + 1] = (target_box_center_y - prior_box_center_y) /
prior_box_height /
prior_box_var_data[col_idx * len + 1];
output[idx * len + 2] = log(fabs(target_box_width / prior_box_width)) /
prior_box_var_data[col_idx * len + 2];
output[idx * len + 3] = log(fabs(target_box_height / prior_box_height)) /
prior_box_var_data[col_idx * len + 3];
7 years ago
}
}
template <typename T>
__global__ void DecodeCenterSizeKernel(const T* prior_box_data,
const T* prior_box_var_data,
const T* target_box_data, const int row,
const int col, const int len,
T* output) {
7 years ago
const int idx = threadIdx.x + blockIdx.x * blockDim.x;
if (idx < row * col) {
const int col_idx = idx % col;
T prior_box_width =
prior_box_data[col_idx * len + 2] - prior_box_data[col_idx * len];
7 years ago
T prior_box_height =
prior_box_data[col_idx * len + 3] - prior_box_data[col_idx * len + 1];
7 years ago
T prior_box_center_x =
(prior_box_data[col_idx * len + 2] + prior_box_data[col_idx * len]) / 2;
T prior_box_center_y = (prior_box_data[col_idx * len + 3] +
prior_box_data[col_idx * len + 1]) /
2;
7 years ago
T target_box_width = exp(prior_box_var_data[col_idx * len + 2] *
target_box_data[idx * len + 2]) *
7 years ago
prior_box_width;
T target_box_height = exp(prior_box_var_data[col_idx * len + 3] *
target_box_data[idx * len + 3]) *
7 years ago
prior_box_height;
T target_box_center_x = prior_box_var_data[col_idx * len] *
target_box_data[idx * len] * prior_box_width +
7 years ago
prior_box_center_x;
T target_box_center_y = prior_box_var_data[col_idx * len + 1] *
target_box_data[idx * len + 1] *
7 years ago
prior_box_height +
prior_box_center_y;
output[idx * len] = target_box_center_x - target_box_width / 2;
output[idx * len + 1] = target_box_center_y - target_box_height / 2;
output[idx * len + 2] = target_box_center_x + target_box_width / 2;
output[idx * len + 3] = target_box_center_y + target_box_height / 2;
7 years ago
}
}
template <typename T>
class BoxCoderCUDAKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
PADDLE_ENFORCE(platform::is_gpu_place(context.GetPlace()),
"This kernel only runs on GPU device.");
auto* prior_box = context.Input<framework::Tensor>("PriorBox");
auto* prior_box_var = context.Input<framework::Tensor>("PriorBoxVar");
auto* target_box = context.Input<framework::LoDTensor>("TargetBox");
auto* output_box = context.Output<framework::Tensor>("OutputBox");
7 years ago
if (target_box->lod().size()) {
PADDLE_ENFORCE_EQ(target_box->lod().size(), 1,
7 years ago
"Only support 1 level of LoD.");
}
auto row = target_box->dims()[0];
auto col = prior_box->dims()[0];
auto len = prior_box->dims()[1];
7 years ago
int block = 512;
int grid = (row * col + block - 1) / block;
auto& device_ctx = context.cuda_device_context();
const T* prior_box_data = prior_box->data<T>();
const T* prior_box_var_data = prior_box_var->data<T>();
const T* target_box_data = target_box->data<T>();
output_box->mutable_data<T>({row, col, len}, context.GetPlace());
7 years ago
T* output = output_box->data<T>();
auto code_type = GetBoxCodeType(context.Attr<std::string>("code_type"));
if (code_type == BoxCodeType::kEncodeCenterSize) {
EncodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
prior_box_data, prior_box_var_data, target_box_data, row, col, len,
7 years ago
output);
} else if (code_type == BoxCodeType::kDecodeCenterSize) {
DecodeCenterSizeKernel<T><<<grid, block, 0, device_ctx.stream()>>>(
prior_box_data, prior_box_var_data, target_box_data, row, col, len,
7 years ago
output);
}
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_CUDA_KERNEL(box_coder, ops::BoxCoderCUDAKernel<float>,
ops::BoxCoderCUDAKernel<double>);