You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/clip_op.h

191 lines
6.5 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
8 years ago
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
8 years ago
http://www.apache.org/licenses/LICENSE-2.0
8 years ago
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
8 years ago
#pragma once
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/operators/math/selected_rows_functor.h"
#include "paddle/fluid/platform/transform.h"
8 years ago
namespace paddle {
namespace operators {
using framework::Tensor;
using platform::Transform;
8 years ago
#ifdef __NVCC__
template <typename T, typename UnaryOperation>
__global__ void ClipCudaKernel(const T* input, T* out, int num,
UnaryOperation op) {
int idx = threadIdx.x + blockDim.x * blockIdx.x;
if (idx < num) {
out[idx] = op(input[idx]);
}
}
#endif
template <typename T>
class ClipFunctor {
public:
explicit ClipFunctor(const T min, const T max) : min_(min), max_(max) {}
HOSTDEVICE T operator()(const T& x) const {
return x < min_ ? min_ : x > max_ ? max_ : x;
}
private:
T min_;
T max_;
};
template <typename T>
class ClipGradFunctor {
public:
explicit ClipGradFunctor(const T min, const T max) : min_(min), max_(max) {}
HOSTDEVICE T operator()(const T& x, const T& y) const {
8 years ago
return (y > min_ && y < max_) ? x : 0;
}
8 years ago
private:
T min_;
T max_;
};
template <typename DeviceContext, typename T>
class ClipKernel : public framework::OpKernel<T> {
8 years ago
public:
void Compute(const framework::ExecutionContext& context) const override {
auto max = static_cast<T>(context.Attr<float>("max"));
Tensor max_cpu;
if (context.HasInput("Max")) {
auto* max_t = context.Input<Tensor>("Max");
auto* max_data = max_t->data<T>();
if (platform::is_gpu_place(max_t->place())) {
TensorCopySync(*max_t, platform::CPUPlace(), &max_cpu);
max_data = max_cpu.data<T>();
}
max = max_data[0];
}
max = static_cast<T>(max);
auto min = context.Attr<float>("min");
Tensor min_cpu;
if (context.HasInput("Min")) {
auto* min_t = context.Input<Tensor>("Min");
auto* min_data = min_t->data<T>();
if (platform::is_gpu_place(min_t->place())) {
TensorCopySync(*min_t, platform::CPUPlace(), &min_cpu);
min_data = min_cpu.data<T>();
}
min = min_data[0];
}
PADDLE_ENFORCE_LE(min, max,
platform::errors::InvalidArgument(
"max should be greater than or equal to min. "
"But received min = %f, max = %f",
min, max));
auto* x_var = context.InputVar("X");
if (x_var->IsType<framework::LoDTensor>()) {
auto* x = context.Input<framework::LoDTensor>("X");
auto* out = context.Output<framework::LoDTensor>("Out");
T* out_data = out->mutable_data<T>(context.GetPlace());
const T* x_data = x->data<T>();
int64_t numel = x->numel();
if (platform::is_gpu_place(context.GetPlace())) {
#ifdef __NVCC__
int threads = 256;
int blocks = (numel + threads - 1) / threads;
ClipCudaKernel<T, ClipFunctor<T>><<<
blocks, threads, 0,
context.template device_context<platform::CUDADeviceContext>()
.stream()>>>(x_data, out_data, numel, ClipFunctor<T>(min, max));
#endif
} else {
Transform<DeviceContext> trans;
trans(context.template device_context<DeviceContext>(), x_data,
x_data + numel, out_data, ClipFunctor<T>(min, max));
}
} else if (x_var->IsType<framework::SelectedRows>()) {
auto* x = context.Input<framework::SelectedRows>("X");
auto* out = context.Output<framework::SelectedRows>("Out");
PADDLE_ENFORCE_NE(x, out, platform::errors::InvalidArgument(
"Inplace clip is not allowed "
"when x is SelectedRows"));
math::scatter::MergeAdd<DeviceContext, T> merge_func;
merge_func(context.template device_context<DeviceContext>(), *x, out);
auto* out_tensor = out->mutable_value();
auto* out_data = out_tensor->data<T>();
int64_t numel = out_tensor->numel();
Transform<DeviceContext> trans;
trans(context.template device_context<DeviceContext>(), out_data,
out_data + numel, out_data, ClipFunctor<T>(min, max));
} else {
PADDLE_THROW(platform::errors::Unavailable(
"ClipOp only supports LoDTensor and SelectedRows."));
}
8 years ago
}
};
template <typename DeviceContext, typename T>
class ClipGradKernel : public framework::OpKernel<T> {
8 years ago
public:
void Compute(const framework::ExecutionContext& context) const override {
auto max = static_cast<T>(context.Attr<float>("max"));
Tensor max_cpu;
if (context.HasInput("Max")) {
auto* max_t = context.Input<Tensor>("Max");
auto* max_data = max_t->data<T>();
if (platform::is_gpu_place(max_t->place())) {
TensorCopySync(*max_t, platform::CPUPlace(), &max_cpu);
max_data = max_cpu.data<T>();
}
max = max_data[0];
}
max = static_cast<T>(max);
auto min = context.Attr<float>("min");
Tensor min_cpu;
if (context.HasInput("Min")) {
auto* min_t = context.Input<Tensor>("Min");
auto* min_data = min_t->data<T>();
if (platform::is_gpu_place(min_t->place())) {
TensorCopySync(*min_t, platform::CPUPlace(), &min_cpu);
min_data = min_cpu.data<T>();
}
min = min_data[0];
}
min = static_cast<T>(min);
auto* d_out =
context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
auto* d_x =
context.Output<framework::LoDTensor>(framework::GradVarName("X"));
if (d_x != nullptr) {
auto* x = context.Input<framework::LoDTensor>("X");
int64_t numel = d_out->numel();
8 years ago
auto* d_x_data = d_x->mutable_data<T>(context.GetPlace());
const T* d_out_data = d_out->data<T>();
const T* x_data = x->data<T>();
Transform<DeviceContext> trans;
trans(context.template device_context<DeviceContext>(), d_out_data,
d_out_data + numel, x_data, d_x_data, ClipGradFunctor<T>(min, max));
8 years ago
}
}
};
} // namespace operators
} // namespace paddle