|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
#include "paddle/fluid/platform/device_context.h"
|
|
|
|
#include <set>
|
|
|
|
#include <string>
|
|
|
|
#include <unordered_set>
|
|
|
|
#include <vector>
|
|
|
|
|
|
|
|
#include "paddle/fluid/memory/memory.h"
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
#include "paddle/fluid/framework/rw_lock.h"
|
|
|
|
#include "paddle/fluid/memory/allocation/cuda_device_context_allocator.h"
|
|
|
|
#include "paddle/fluid/platform/cuda_device_guard.h"
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#include "glog/logging.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace memory {
|
|
|
|
|
|
|
|
AllocationPtr Alloc(const platform::DeviceContext& dev_ctx, size_t size) {
|
|
|
|
auto place = dev_ctx.GetPlace();
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
if (size == 0 || !platform::is_gpu_place(place)) {
|
|
|
|
return Alloc(place, size);
|
|
|
|
}
|
|
|
|
auto* default_dev_ctx = static_cast<platform::CUDADeviceContext*>(
|
|
|
|
platform::DeviceContextPool::Instance().Get(place));
|
|
|
|
auto& desired_dev_ctx =
|
|
|
|
static_cast<const platform::CUDADeviceContext&>(dev_ctx);
|
|
|
|
if (default_dev_ctx->stream() == desired_dev_ctx.stream()) {
|
|
|
|
return Alloc(place, size);
|
|
|
|
} else {
|
|
|
|
return allocation::CUDADeviceContextAllocatorPool::Instance().Alloc(
|
|
|
|
desired_dev_ctx, size);
|
|
|
|
}
|
|
|
|
#else
|
|
|
|
return Alloc(place, size);
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace memory
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace platform {
|
|
|
|
|
|
|
|
DeviceContextPool* DeviceContextPool::pool = nullptr;
|
|
|
|
|
|
|
|
platform::DeviceContext* DeviceContextPool::Get(const platform::Place& place) {
|
|
|
|
auto it = device_contexts_.find(place);
|
|
|
|
if (it == device_contexts_.end()) {
|
|
|
|
PADDLE_THROW(platform::errors::Unimplemented(
|
|
|
|
"Place %s is not supported. Please check that your paddle compiles "
|
|
|
|
"with WITH_GPU or WITH_XPU option or check that your train process "
|
|
|
|
"hold the "
|
|
|
|
"correct gpu_id if you use Executor.",
|
|
|
|
place));
|
|
|
|
}
|
|
|
|
return it->second.get().get();
|
|
|
|
}
|
|
|
|
|
|
|
|
template <typename DevCtx, typename PlaceType>
|
|
|
|
inline void EmplaceDeviceContext(
|
|
|
|
std::map<Place, std::shared_future<std::unique_ptr<DeviceContext>>>*
|
|
|
|
map_ptr,
|
|
|
|
platform::Place p) {
|
|
|
|
using PtrType = std::unique_ptr<DeviceContext>;
|
|
|
|
map_ptr->emplace(p, std::async(std::launch::deferred, [=] {
|
|
|
|
// lazy evaluation. i.e., only create device context at
|
|
|
|
// first `Get`
|
|
|
|
return PtrType(new DevCtx(BOOST_GET_CONST(PlaceType, p)));
|
|
|
|
}));
|
|
|
|
}
|
|
|
|
|
|
|
|
DeviceContextPool::DeviceContextPool(
|
|
|
|
const std::vector<platform::Place>& places) {
|
|
|
|
PADDLE_ENFORCE_GT(
|
|
|
|
places.size(), 0,
|
|
|
|
platform::errors::InvalidArgument("The number of platform places should "
|
|
|
|
"be larger than 0. But received %d.",
|
|
|
|
places.size()));
|
|
|
|
std::set<Place> set;
|
|
|
|
for (auto& p : places) {
|
|
|
|
set.insert(p);
|
|
|
|
}
|
|
|
|
for (auto& p : set) {
|
|
|
|
if (platform::is_cpu_place(p)) {
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
EmplaceDeviceContext<MKLDNNDeviceContext, CPUPlace>(&device_contexts_, p);
|
|
|
|
#else
|
|
|
|
EmplaceDeviceContext<CPUDeviceContext, CPUPlace>(&device_contexts_, p);
|
|
|
|
#endif
|
|
|
|
} else if (platform::is_gpu_place(p)) {
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
EmplaceDeviceContext<CUDADeviceContext, CUDAPlace>(&device_contexts_, p);
|
|
|
|
#else
|
|
|
|
PADDLE_THROW(
|
|
|
|
platform::errors::Unimplemented("CUDAPlace is not supported. Please "
|
|
|
|
"re-compile with WITH_GPU option."));
|
|
|
|
#endif
|
|
|
|
} else if (platform::is_cuda_pinned_place(p)) {
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
EmplaceDeviceContext<CUDAPinnedDeviceContext, CUDAPinnedPlace>(
|
|
|
|
&device_contexts_, p);
|
|
|
|
#else
|
|
|
|
PADDLE_THROW(platform::errors::Unimplemented(
|
|
|
|
"CUDAPlace is not supported. Please re-compile with WITH_GPU "
|
|
|
|
"option."));
|
|
|
|
#endif
|
|
|
|
} else if (platform::is_xpu_place(p)) {
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
|
|
EmplaceDeviceContext<XPUDeviceContext, XPUPlace>(&device_contexts_, p);
|
|
|
|
#else
|
|
|
|
PADDLE_THROW(
|
|
|
|
platform::errors::Unimplemented("XPUPlace is not supported. Please "
|
|
|
|
"re-compile with WITH_XPU option."));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
CPUDeviceContext::CPUDeviceContext() {
|
|
|
|
eigen_device_.reset(new Eigen::DefaultDevice());
|
|
|
|
}
|
|
|
|
|
|
|
|
CPUDeviceContext::CPUDeviceContext(CPUPlace place) : place_(place) {
|
|
|
|
eigen_device_.reset(new Eigen::DefaultDevice());
|
|
|
|
}
|
|
|
|
|
|
|
|
Eigen::DefaultDevice* CPUDeviceContext::eigen_device() const {
|
|
|
|
return eigen_device_.get();
|
|
|
|
}
|
|
|
|
|
|
|
|
Place CPUDeviceContext::GetPlace() const { return place_; }
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_XPU
|
|
|
|
XPUDeviceContext::XPUDeviceContext() { context_ = xpu::create_context(); }
|
|
|
|
|
|
|
|
XPUDeviceContext::~XPUDeviceContext() { xpu::destroy_context(context_); }
|
|
|
|
|
|
|
|
XPUDeviceContext::XPUDeviceContext(XPUPlace place) : place_(place) {
|
|
|
|
int dev_id = -1;
|
|
|
|
int ret = xpu_current_device(&dev_id);
|
|
|
|
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
|
|
|
|
platform::errors::External(
|
|
|
|
"XPU API return wrong value[%d], please check whether "
|
|
|
|
"Baidu Kunlun Card is properly installed.",
|
|
|
|
ret));
|
|
|
|
ret = xpu_set_device(place.device);
|
|
|
|
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
|
|
|
|
platform::errors::External(
|
|
|
|
"XPU API return wrong value[%d], please check whether "
|
|
|
|
"Baidu Kunlun Card is properly installed.",
|
|
|
|
ret));
|
|
|
|
context_ = xpu::create_context();
|
|
|
|
ret = xpu_set_device(dev_id);
|
|
|
|
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
|
|
|
|
platform::errors::External(
|
|
|
|
"XPU API return wrong value[%d], please check whether "
|
|
|
|
"Baidu Kunlun Card is properly installed.",
|
|
|
|
ret));
|
|
|
|
}
|
|
|
|
|
|
|
|
void XPUDeviceContext::Wait() const {
|
|
|
|
int ret = xpu_set_device(place_.device);
|
|
|
|
PADDLE_ENFORCE_EQ(ret, XPU_SUCCESS,
|
|
|
|
platform::errors::External(
|
|
|
|
"XPU API return wrong value[%d], please check whether "
|
|
|
|
"Baidu Kunlun Card is properly installed.",
|
|
|
|
ret));
|
|
|
|
xpu_wait();
|
|
|
|
}
|
|
|
|
|
|
|
|
Place XPUDeviceContext::GetPlace() const { return place_; }
|
|
|
|
|
|
|
|
xpu::Context* XPUDeviceContext::x_context() const { return context_; }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
|
|
|
|
class EigenCudaStreamDevice : public Eigen::StreamInterface {
|
|
|
|
public:
|
|
|
|
EigenCudaStreamDevice() : scratch_(nullptr), semaphore_(nullptr) {
|
|
|
|
Eigen::initializeDeviceProp();
|
|
|
|
}
|
|
|
|
~EigenCudaStreamDevice() override {}
|
|
|
|
|
|
|
|
void Reinitialize(const cudaStream_t* cuda_stream, CUDAPlace place) {
|
|
|
|
stream_ = cuda_stream;
|
|
|
|
place_ = place;
|
|
|
|
device_prop_ = &Eigen::m_deviceProperties[place.device];
|
|
|
|
}
|
|
|
|
|
|
|
|
const cudaStream_t& stream() const override { return *stream_; }
|
|
|
|
|
|
|
|
const cudaDeviceProp& deviceProperties() const override {
|
|
|
|
return *device_prop_;
|
|
|
|
}
|
|
|
|
|
|
|
|
void* allocate(size_t num_bytes) const override {
|
|
|
|
if (UNLIKELY(num_bytes == 0)) {
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
auto buf = memory::Alloc(place_, num_bytes);
|
|
|
|
VLOG(4) << "Eigen allocated at " << buf->ptr() << ", size" << buf->size()
|
|
|
|
<< " requested " << num_bytes;
|
|
|
|
void* retv = buf->ptr();
|
|
|
|
{
|
|
|
|
std::lock_guard<std::mutex> lock(mtx_);
|
|
|
|
allocations_.emplace(retv, std::move(buf));
|
|
|
|
}
|
|
|
|
return retv;
|
|
|
|
}
|
|
|
|
|
|
|
|
void deallocate(void* buffer) const override {
|
|
|
|
if (LIKELY(buffer)) {
|
|
|
|
std::lock_guard<std::mutex> lock(mtx_);
|
|
|
|
allocations_.erase(buffer);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void* scratchpad() const override {
|
|
|
|
if (scratch_ == NULL) {
|
|
|
|
// windows use an old version of eigen that uses kCudaScratchSize,
|
|
|
|
// once windows updates eigen to a recent version, the following code
|
|
|
|
// can use kGpuScratchSize uniformly
|
|
|
|
#ifdef _WIN32
|
|
|
|
scratch_ = allocate(Eigen::kCudaScratchSize + sizeof(unsigned int));
|
|
|
|
#else
|
|
|
|
scratch_ = allocate(Eigen::kGpuScratchSize + sizeof(unsigned int));
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
return scratch_;
|
|
|
|
}
|
|
|
|
|
|
|
|
unsigned int* semaphore() const override {
|
|
|
|
if (semaphore_ == NULL) {
|
|
|
|
#ifdef _WIN32
|
|
|
|
char* scratch =
|
|
|
|
static_cast<char*>(scratchpad()) + Eigen::kCudaScratchSize;
|
|
|
|
#else
|
|
|
|
char* scratch = static_cast<char*>(scratchpad()) + Eigen::kGpuScratchSize;
|
|
|
|
#endif
|
|
|
|
semaphore_ = reinterpret_cast<unsigned int*>(scratch);
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(
|
|
|
|
cudaMemsetAsync(semaphore_, 0, sizeof(unsigned int), *stream_));
|
|
|
|
}
|
|
|
|
return semaphore_;
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
CUDAPlace place_;
|
|
|
|
const cudaStream_t* stream_; // not owned;
|
|
|
|
const cudaDeviceProp* device_prop_; // not owned;
|
|
|
|
mutable void* scratch_;
|
|
|
|
mutable unsigned int* semaphore_;
|
|
|
|
mutable std::mutex mtx_; // to protect allocations_
|
|
|
|
mutable std::unordered_map<void*, memory::AllocationPtr> allocations_;
|
|
|
|
};
|
|
|
|
|
|
|
|
void CudnnWorkspaceHandle::ReallocWorkspace(size_t required_workspace_bytes) {
|
|
|
|
if (required_workspace_bytes <= WorkspaceSize()) {
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
// reset allocation first before re-allocate to save memory
|
|
|
|
allocation_.reset();
|
|
|
|
allocation_ = memory::Alloc(device_context_, required_workspace_bytes);
|
|
|
|
}
|
|
|
|
|
|
|
|
thread_local std::unordered_map<const CUDADeviceContext*,
|
|
|
|
std::shared_ptr<CUDAContext>>
|
|
|
|
CUDADeviceContext::thread_ctx_;
|
|
|
|
thread_local std::mutex CUDADeviceContext::ctx_mtx_;
|
|
|
|
|
|
|
|
void CUDAContext::InitEigenContext() {
|
|
|
|
eigen_stream_.reset(new EigenCudaStreamDevice());
|
|
|
|
eigen_stream_->Reinitialize(&RawStream(), place_);
|
|
|
|
eigen_device_.reset(new Eigen::GpuDevice(eigen_stream_.get()));
|
|
|
|
}
|
|
|
|
|
|
|
|
CUDAContext::CUDAContext(const CUDAPlace& place,
|
|
|
|
const stream::Priority& priority) {
|
|
|
|
place_ = place;
|
|
|
|
CUDADeviceGuard guard(place_.device);
|
|
|
|
stream_.reset(new stream::CUDAStream(place, priority));
|
|
|
|
InitEigenContext();
|
|
|
|
InitCuBlasContext();
|
|
|
|
InitCuDNNContext();
|
|
|
|
InitCuSolverContext();
|
|
|
|
}
|
|
|
|
|
|
|
|
CUDAContext::~CUDAContext() {
|
|
|
|
CUDADeviceGuard guard(place_.device);
|
|
|
|
DestoryCuDNNContext();
|
|
|
|
DestoryCuBlasContext();
|
|
|
|
DestoryCuSolverContext();
|
|
|
|
}
|
|
|
|
|
|
|
|
CUDADeviceContext::CUDADeviceContext(CUDAPlace place) : place_(place) {
|
|
|
|
CUDADeviceGuard guard(place_.device);
|
|
|
|
compute_capability_ = GetCUDAComputeCapability(place_.device);
|
|
|
|
multi_process_ = GetCUDAMultiProcessors(place_.device);
|
|
|
|
max_threads_per_mp_ = GetCUDAMaxThreadsPerMultiProcessor(place_.device);
|
|
|
|
max_grid_dim_size_ = GetGpuMaxGridDimSize(place_.device);
|
|
|
|
max_threads_per_block_ = GetCUDAMaxThreadsPerBlock(place_.device);
|
|
|
|
|
|
|
|
driver_version_ = GetCUDADriverVersion(place_.device);
|
|
|
|
runtime_version_ = GetCUDARuntimeVersion(place_.device);
|
|
|
|
|
|
|
|
LOG_FIRST_N(WARNING, 1) << "Please NOTE: device: " << place_.device
|
|
|
|
<< ", CUDA Capability: " << compute_capability_
|
|
|
|
<< ", Driver API Version: " << driver_version_ / 1000
|
|
|
|
<< "." << (driver_version_ % 100) / 10
|
|
|
|
<< ", Runtime API Version: "
|
|
|
|
<< runtime_version_ / 1000 << "."
|
|
|
|
<< (runtime_version_ % 100) / 10;
|
|
|
|
size_t cudnn_dso_ver = dynload::cudnnGetVersion();
|
|
|
|
LOG_FIRST_N(WARNING, 1) << "device: " << place_.device
|
|
|
|
<< ", cuDNN Version: " << cudnn_dso_ver / 1000 << "."
|
|
|
|
<< (cudnn_dso_ver % 1000) / 100 << ".";
|
|
|
|
|
|
|
|
{
|
|
|
|
// Check CUDA/CUDNN version compatiblity
|
|
|
|
auto local_cuda_version =
|
|
|
|
(driver_version_ / 1000) * 10 + (driver_version_ % 100) / 10;
|
|
|
|
auto compile_cuda_version =
|
|
|
|
(CUDA_VERSION / 1000) * 10 + (CUDA_VERSION % 100) / 10;
|
|
|
|
if (local_cuda_version < compile_cuda_version) {
|
|
|
|
LOG_FIRST_N(WARNING, 1)
|
|
|
|
<< "WARNING: device: " << place_.device
|
|
|
|
<< ". The installed Paddle is compiled with CUDA "
|
|
|
|
<< compile_cuda_version / 10 << "." << compile_cuda_version % 10
|
|
|
|
<< ", but CUDA runtime version in your machine is "
|
|
|
|
<< local_cuda_version / 10 << "." << local_cuda_version % 10
|
|
|
|
<< ", which may cause serious incompatible bug. "
|
|
|
|
<< "Please recompile or reinstall Paddle with compatible CUDA "
|
|
|
|
"version.";
|
|
|
|
}
|
|
|
|
}
|
|
|
|
default_ctx_.reset(new CUDAContext(place_));
|
|
|
|
}
|
|
|
|
|
|
|
|
CUDADeviceContext::~CUDADeviceContext() {
|
|
|
|
SetDeviceId(place_.device);
|
|
|
|
#if defined(PADDLE_WITH_NCCL)
|
|
|
|
if (nccl_comm_) {
|
|
|
|
PADDLE_ENFORCE_CUDA_SUCCESS(dynload::ncclCommDestroy(nccl_comm_));
|
|
|
|
}
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
Place CUDADeviceContext::GetPlace() const { return place_; }
|
|
|
|
|
|
|
|
void CUDADeviceContext::Wait() const { context()->Stream()->Wait(); }
|
|
|
|
|
|
|
|
int CUDADeviceContext::GetComputeCapability() const {
|
|
|
|
return compute_capability_;
|
|
|
|
}
|
|
|
|
|
|
|
|
int CUDADeviceContext::GetMaxPhysicalThreadCount() const {
|
|
|
|
return multi_process_ * max_threads_per_mp_;
|
|
|
|
}
|
|
|
|
|
|
|
|
int CUDADeviceContext::GetSMCount() const { return multi_process_; }
|
|
|
|
|
|
|
|
int CUDADeviceContext::GetMaxThreadsPerBlock() const {
|
|
|
|
return max_threads_per_block_;
|
|
|
|
}
|
|
|
|
|
|
|
|
Eigen::GpuDevice* CUDADeviceContext::eigen_device() const {
|
|
|
|
return context()->EigenDevice().get();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool CUDADeviceContext::tensor_core_available() const {
|
|
|
|
return context()->CublasTensorCoreHandle() != nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
dim3 CUDADeviceContext::GetCUDAMaxGridDimSize() const {
|
|
|
|
return max_grid_dim_size_;
|
|
|
|
}
|
|
|
|
|
|
|
|
cudnnHandle_t CUDADeviceContext::cudnn_handle() const {
|
|
|
|
return context()->CudnnHandle();
|
|
|
|
}
|
|
|
|
|
|
|
|
CudnnWorkspaceHandle CUDADeviceContext::cudnn_workspace_handle() const {
|
|
|
|
return CudnnWorkspaceHandle(*this, &cudnn_handle_mtx_);
|
|
|
|
}
|
|
|
|
|
|
|
|
cusolverDnHandle_t CUDADeviceContext::cusolver_dn_handle() const {
|
|
|
|
return context()->CusolverDnHandle();
|
|
|
|
}
|
|
|
|
|
|
|
|
cudaStream_t CUDADeviceContext::stream() const {
|
|
|
|
return context()->RawStream();
|
|
|
|
}
|
|
|
|
|
|
|
|
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext() {
|
|
|
|
eigen_device_.reset(new Eigen::DefaultDevice());
|
|
|
|
}
|
|
|
|
|
|
|
|
CUDAPinnedDeviceContext::CUDAPinnedDeviceContext(CUDAPinnedPlace place)
|
|
|
|
: place_(place) {
|
|
|
|
eigen_device_.reset(new Eigen::DefaultDevice());
|
|
|
|
}
|
|
|
|
|
|
|
|
Eigen::DefaultDevice* CUDAPinnedDeviceContext::eigen_device() const {
|
|
|
|
return eigen_device_.get();
|
|
|
|
}
|
|
|
|
|
|
|
|
Place CUDAPinnedDeviceContext::GetPlace() const { return place_; }
|
|
|
|
#endif
|
|
|
|
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
MKLDNNDeviceContext::MKLDNNDeviceContext(CPUPlace place)
|
|
|
|
: CPUDeviceContext(place),
|
|
|
|
engine_(mkldnn::engine::kind::cpu, 0),
|
|
|
|
p_blobmap_() {
|
|
|
|
p_blobmap_.reset(new BlobMap());
|
|
|
|
p_mutex_.reset(new std::mutex());
|
|
|
|
}
|
|
|
|
|
|
|
|
MKLDNNDeviceContextThreadLocals::Body::Body() {
|
|
|
|
cur_mkldnn_session_id = kMKLDNNSessionID_Default;
|
|
|
|
cur_input_shape_str = "";
|
|
|
|
cur_input_shape_cache_capacity = 1;
|
|
|
|
cur_paddle_data_layout = paddle::framework::DataLayout::kNCHW;
|
|
|
|
}
|
|
|
|
|
|
|
|
void MKLDNNDeviceContextThreadLocals::Body::set_cur_mkldnn_session_id(
|
|
|
|
size_t sid) {
|
|
|
|
cur_mkldnn_session_id = sid;
|
|
|
|
}
|
|
|
|
size_t MKLDNNDeviceContextThreadLocals::Body::get_cur_mkldnn_session_id(void) {
|
|
|
|
return cur_mkldnn_session_id;
|
|
|
|
}
|
|
|
|
|
|
|
|
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_str(
|
|
|
|
std::string input_shape_str) {
|
|
|
|
cur_input_shape_str = input_shape_str;
|
|
|
|
}
|
|
|
|
void MKLDNNDeviceContextThreadLocals::Body::set_cur_input_shape_cache_capacity(
|
|
|
|
int input_shape_cache_capacity) {
|
|
|
|
cur_input_shape_cache_capacity = input_shape_cache_capacity;
|
|
|
|
}
|
|
|
|
|
|
|
|
void MKLDNNDeviceContextThreadLocals::Body::set_cur_paddle_data_layout(
|
|
|
|
framework::DataLayout dl) {
|
|
|
|
cur_paddle_data_layout = dl;
|
|
|
|
}
|
|
|
|
|
|
|
|
framework::DataLayout
|
|
|
|
MKLDNNDeviceContextThreadLocals::Body::get_cur_paddle_data_layout(void) {
|
|
|
|
return cur_paddle_data_layout;
|
|
|
|
}
|
|
|
|
|
|
|
|
void MKLDNNDeviceContext::ResetBlobMap() {
|
|
|
|
std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
|
|
|
|
if (!block_next_cache_clearing_) {
|
|
|
|
VLOG(3) << "Clearing DNNL cache.";
|
|
|
|
p_blobmap_->clear();
|
|
|
|
} else {
|
|
|
|
VLOG(3) << "Prevented Clearing DNNL cache.";
|
|
|
|
block_next_cache_clearing_ = false;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
void MKLDNNDeviceContext::BlockNextCacheClearing() {
|
|
|
|
std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
|
|
|
|
VLOG(3) << "Next DNNL cache clearing has been blocked.";
|
|
|
|
block_next_cache_clearing_ = true;
|
|
|
|
}
|
|
|
|
|
|
|
|
size_t MKLDNNDeviceContext::GetShapeBlobSize() const {
|
|
|
|
std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
|
|
|
|
BlobMap* pMap = p_blobmap_.get();
|
|
|
|
auto map_it = pMap->find(tls().cur_mkldnn_session_id);
|
|
|
|
if (map_it == pMap->end()) {
|
|
|
|
PADDLE_THROW(platform::errors::NotFound(
|
|
|
|
"MKLDNNDeviceContext don't find cur_mkldnn_session_id: %d.",
|
|
|
|
tls().cur_mkldnn_session_id));
|
|
|
|
}
|
|
|
|
return map_it->second->size();
|
|
|
|
}
|
|
|
|
|
|
|
|
void MKLDNNDeviceContext::SetBlob(const std::string& name,
|
|
|
|
BlobPtr_t<void> data) const {
|
|
|
|
BlobMap* pMap = p_blobmap_.get();
|
|
|
|
BlobPtr_t<ShapeBlob> sBlob = nullptr;
|
|
|
|
BlobPtr_t<KeyBlob> pBlob = nullptr;
|
|
|
|
|
|
|
|
int sid = tls().get_cur_mkldnn_session_id();
|
|
|
|
|
|
|
|
std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
|
|
|
|
|
|
|
|
// Find ShapeBlob for current mkldnn session id.
|
|
|
|
auto map_it = pMap->find(sid);
|
|
|
|
|
|
|
|
if (map_it == pMap->end()) {
|
|
|
|
// 1st time to set blob in current thread
|
|
|
|
sBlob = std::make_shared<ShapeBlob>();
|
|
|
|
(*pMap)[sid] = sBlob;
|
|
|
|
VLOG(2) << "SetBlob: sid=" << sid << ", add new sid\n";
|
|
|
|
} else {
|
|
|
|
sBlob = map_it->second;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find KeyBlob for current input shape
|
|
|
|
auto key_it = sBlob->find(tls().cur_input_shape_str);
|
|
|
|
|
|
|
|
if (key_it == sBlob->end()) {
|
|
|
|
// In cache clearing mode, cur_input_shape_cache_capacity defines
|
|
|
|
// max pblob capacity
|
|
|
|
if ((static_cast<size_t>(sid) ==
|
|
|
|
MKLDNNDeviceContextThreadLocals::kMKLDNNSessionID_CacheClearing) &&
|
|
|
|
sBlob->size() &&
|
|
|
|
(sBlob->size() >=
|
|
|
|
static_cast<size_t>(tls().cur_input_shape_cache_capacity))) {
|
|
|
|
VLOG(2) << "sid=" << sid
|
|
|
|
<< ", remove all blobs of shape: " << sBlob->begin()->first;
|
|
|
|
sBlob->erase(sBlob->begin()->first);
|
|
|
|
}
|
|
|
|
pBlob = std::make_shared<KeyBlob>();
|
|
|
|
(*sBlob)[tls().cur_input_shape_str] = pBlob;
|
|
|
|
} else {
|
|
|
|
pBlob = key_it->second;
|
|
|
|
}
|
|
|
|
|
|
|
|
// Find Blob via name
|
|
|
|
auto blob_it = pBlob->find(name);
|
|
|
|
if (blob_it == pBlob->end()) {
|
|
|
|
(*pBlob)[name] = data;
|
|
|
|
} else {
|
|
|
|
blob_it->second = data; // set data to existing blob
|
|
|
|
}
|
|
|
|
VLOG(2) << "SetBlob: sid=" << sid << ", add blob=" << name << "\n";
|
|
|
|
// lock will be automatically released when out of scope
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
MKLDNNDeviceContext::BlobPtr_t<void> MKLDNNDeviceContext::GetBlob(
|
|
|
|
const std::string& name) const {
|
|
|
|
BlobMap* pMap = p_blobmap_.get();
|
|
|
|
BlobPtr_t<ShapeBlob> sBlob = nullptr;
|
|
|
|
BlobPtr_t<KeyBlob> pBlob = nullptr;
|
|
|
|
|
|
|
|
int sid = tls().get_cur_mkldnn_session_id();
|
|
|
|
|
|
|
|
std::lock_guard<decltype(*p_mutex_)> lock(*p_mutex_);
|
|
|
|
|
|
|
|
// Find ShapeBlob for current mkldnn session id firstly
|
|
|
|
auto map_it = pMap->find(sid);
|
|
|
|
if (map_it == pMap->end()) {
|
|
|
|
VLOG(2) << "GetBlob: sid=" << sid << ", miss sid\n";
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
sBlob = map_it->second;
|
|
|
|
|
|
|
|
// Find KeyBlob for current input shape secondly
|
|
|
|
auto sBlob_it = sBlob->find(tls().cur_input_shape_str);
|
|
|
|
if (sBlob_it == sBlob->end()) {
|
|
|
|
VLOG(2) << "GetBlob: sid=" << tls().cur_input_shape_str
|
|
|
|
<< ", miss input_shape_str\n";
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
pBlob = sBlob_it->second;
|
|
|
|
|
|
|
|
// Find Blob via name
|
|
|
|
auto key_it = pBlob->find(name);
|
|
|
|
|
|
|
|
if (key_it == pBlob->end()) {
|
|
|
|
VLOG(2) << "GetBlob sid=" << sid << ", miss blob=" << name << "\n";
|
|
|
|
return nullptr;
|
|
|
|
}
|
|
|
|
|
|
|
|
VLOG(2) << "GetBlob sid=" << sid << ", get blob=" << name << "\n";
|
|
|
|
// lock will be automatically released when out of scope
|
|
|
|
return key_it->second;
|
|
|
|
}
|
|
|
|
|
|
|
|
#endif
|
|
|
|
|
|
|
|
} // namespace platform
|
|
|
|
} // namespace paddle
|