|
|
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
//
|
|
|
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
// you may not use this file except in compliance with the License.
|
|
|
|
// You may obtain a copy of the License at
|
|
|
|
//
|
|
|
|
// http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
//
|
|
|
|
// Unless required by applicable law or agreed to in writing, software
|
|
|
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
// See the License for the specific language governing permissions and
|
|
|
|
// limitations under the License.
|
|
|
|
|
|
|
|
#include "paddle/fluid/framework/lod_tensor.h"
|
|
|
|
#include "paddle/fluid/framework/scope.h"
|
|
|
|
#include "paddle/fluid/inference/api/paddle_analysis_config.h"
|
|
|
|
#include "paddle/fluid/inference/api/paddle_inference_api.h"
|
|
|
|
#include "paddle/fluid/inference/api/paddle_pass_builder.h"
|
|
|
|
#include "paddle/fluid/platform/enforce.h"
|
|
|
|
#include "paddle/fluid/platform/gpu_info.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
|
|
|
PassStrategy *contrib::AnalysisConfig::pass_builder() const {
|
|
|
|
if (!pass_builder_.get()) {
|
|
|
|
if (use_gpu_) {
|
|
|
|
LOG(INFO) << "Create GPU IR passes";
|
|
|
|
pass_builder_.reset(new GpuPassStrategy);
|
|
|
|
} else {
|
|
|
|
LOG(INFO) << "Create CPU IR passes";
|
|
|
|
pass_builder_.reset(new CpuPassStrategy);
|
|
|
|
}
|
|
|
|
} else if (pass_builder_->use_gpu() ^ use_gpu()) {
|
|
|
|
LOG(WARNING) << "The use_gpu flag is not compatible between Config and "
|
|
|
|
"PassBuilder, the flags are "
|
|
|
|
<< use_gpu() << " " << pass_builder_->use_gpu();
|
|
|
|
LOG(WARNING) << "Please make them compatible, still use the existing "
|
|
|
|
"PassBuilder.";
|
|
|
|
}
|
|
|
|
|
|
|
|
return pass_builder_.get();
|
|
|
|
}
|
|
|
|
|
|
|
|
contrib::AnalysisConfig::AnalysisConfig(const std::string &model_dir) {
|
|
|
|
model_dir_ = model_dir;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
contrib::AnalysisConfig::AnalysisConfig(const std::string &prog_file,
|
|
|
|
const std::string ¶ms_file) {
|
|
|
|
prog_file_ = prog_file;
|
|
|
|
params_file_ = params_file;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
void contrib::AnalysisConfig::SetModel(const std::string &prog_file_path,
|
|
|
|
const std::string ¶ms_file_path) {
|
|
|
|
prog_file_ = prog_file_path;
|
|
|
|
params_file_ = params_file_path;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
void contrib::AnalysisConfig::EnableUseGpu(uint64_t memory_pool_init_size_mb,
|
|
|
|
int device_id) {
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
use_gpu_ = true;
|
|
|
|
memory_pool_init_size_mb_ = memory_pool_init_size_mb;
|
|
|
|
device_id_ = device_id;
|
|
|
|
#else
|
|
|
|
LOG(ERROR) << "Please compile with gpu to EnableGpu()";
|
|
|
|
use_gpu_ = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
void contrib::AnalysisConfig::DisableGpu() {
|
|
|
|
use_gpu_ = false;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
contrib::AnalysisConfig::AnalysisConfig(const contrib::AnalysisConfig &other) {
|
|
|
|
#define CP_MEMBER(member__) member__ = other.member__;
|
|
|
|
|
|
|
|
// Model related.
|
|
|
|
CP_MEMBER(model_dir_);
|
|
|
|
CP_MEMBER(prog_file_);
|
|
|
|
CP_MEMBER(params_file_);
|
|
|
|
CP_MEMBER(model_from_memory_); // the memory model reuses prog_file_ and
|
|
|
|
// params_file_ fields.
|
|
|
|
// Gpu releated.
|
|
|
|
CP_MEMBER(use_gpu_);
|
|
|
|
CP_MEMBER(device_id_);
|
|
|
|
CP_MEMBER(memory_pool_init_size_mb_);
|
|
|
|
|
|
|
|
CP_MEMBER(enable_memory_optim_);
|
|
|
|
CP_MEMBER(memory_optim_force_update_);
|
|
|
|
// TensorRT releated.
|
|
|
|
CP_MEMBER(use_tensorrt_);
|
|
|
|
CP_MEMBER(tensorrt_workspace_size_);
|
|
|
|
CP_MEMBER(tensorrt_max_batchsize_);
|
|
|
|
CP_MEMBER(tensorrt_min_subgraph_size_);
|
|
|
|
// MKLDNN releated.
|
|
|
|
CP_MEMBER(use_mkldnn_);
|
|
|
|
CP_MEMBER(mkldnn_enabled_op_types_);
|
|
|
|
|
|
|
|
// Ir related.
|
|
|
|
CP_MEMBER(enable_ir_optim_);
|
|
|
|
CP_MEMBER(use_feed_fetch_ops_);
|
|
|
|
CP_MEMBER(ir_debug_);
|
|
|
|
CP_MEMBER(specify_input_name_);
|
|
|
|
|
|
|
|
CP_MEMBER(cpu_math_library_num_threads_);
|
|
|
|
|
|
|
|
CP_MEMBER(serialized_info_cache_);
|
|
|
|
|
|
|
|
if (use_gpu_) {
|
|
|
|
pass_builder_.reset(new GpuPassStrategy(
|
|
|
|
*static_cast<GpuPassStrategy *>(other.pass_builder())));
|
|
|
|
} else {
|
|
|
|
pass_builder_.reset(new CpuPassStrategy(
|
|
|
|
*static_cast<CpuPassStrategy *>(other.pass_builder())));
|
|
|
|
}
|
|
|
|
|
|
|
|
#undef CP_MEMBER
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
void contrib::AnalysisConfig::EnableMKLDNN() {
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
pass_builder()->EnableMKLDNN();
|
|
|
|
use_mkldnn_ = true;
|
|
|
|
#else
|
|
|
|
LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
|
|
|
|
use_mkldnn_ = false;
|
|
|
|
#endif
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
void contrib::AnalysisConfig::EnableTensorRtEngine(int workspace_size,
|
|
|
|
int max_batch_size,
|
|
|
|
int min_subgraph_size) {
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
if (!use_gpu()) {
|
|
|
|
LOG(ERROR) << "To use TensorRT engine, please call EnableGpu() first";
|
|
|
|
return;
|
|
|
|
}
|
|
|
|
|
|
|
|
use_tensorrt_ = true;
|
|
|
|
tensorrt_workspace_size_ = workspace_size;
|
|
|
|
tensorrt_max_batchsize_ = max_batch_size;
|
|
|
|
tensorrt_min_subgraph_size_ = min_subgraph_size;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
#else
|
|
|
|
LOG(ERROR)
|
|
|
|
<< "To use TensorRT engine, please compile inference lib with GPU first.";
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
// TODO(Superjomn) refactor this, buggy.
|
|
|
|
void contrib::AnalysisConfig::Update() {
|
|
|
|
auto info = SerializeInfoCache();
|
|
|
|
if (info == serialized_info_cache_) return;
|
|
|
|
|
|
|
|
// Transfer pass_builder and copy the existing compatible passes.
|
|
|
|
if (!pass_builder_ || ((use_gpu() ^ pass_builder_->use_gpu()))) {
|
|
|
|
if (use_gpu()) {
|
|
|
|
pass_builder_.reset(new GpuPassStrategy);
|
|
|
|
|
|
|
|
if (use_tensorrt_) {
|
|
|
|
// Append after the Affine_channel_conv_fuse pass.
|
|
|
|
pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
|
|
|
|
}
|
|
|
|
} else {
|
|
|
|
pass_builder_.reset(new CpuPassStrategy);
|
|
|
|
}
|
|
|
|
|
|
|
|
} else {
|
|
|
|
if (use_gpu()) {
|
|
|
|
pass_builder_.reset(new GpuPassStrategy(
|
|
|
|
*static_cast<GpuPassStrategy *>(pass_builder_.get())));
|
|
|
|
|
|
|
|
} else {
|
|
|
|
pass_builder_.reset(new CpuPassStrategy(
|
|
|
|
*static_cast<CpuPassStrategy *>(pass_builder_.get())));
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_tensorrt_) {
|
|
|
|
const auto &passes = pass_builder_->AllPasses();
|
|
|
|
if (std::find(passes.begin(), passes.end(), "tensorrt_subgraph_pass") ==
|
|
|
|
std::end(passes)) {
|
|
|
|
// Append after the Affine_channel_conv_fuse pass.
|
|
|
|
pass_builder()->InsertPass(3, "tensorrt_subgraph_pass");
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
if (use_mkldnn_) {
|
|
|
|
if (!enable_ir_optim_) {
|
|
|
|
LOG(ERROR)
|
|
|
|
<< "EnableMKLDNN() only works when IR optimization is enabled.";
|
|
|
|
}
|
|
|
|
#ifdef PADDLE_WITH_MKLDNN
|
|
|
|
pass_builder()->EnableMKLDNN();
|
|
|
|
use_mkldnn_ = true;
|
|
|
|
#else
|
|
|
|
LOG(ERROR) << "Please compile with MKLDNN first to use MKLDNN";
|
|
|
|
use_mkldnn_ = false;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
if (enable_memory_optim_) {
|
|
|
|
pass_builder()->AppendAnalysisPass("memory_optimize_pass");
|
|
|
|
}
|
|
|
|
|
|
|
|
if (ir_debug_) {
|
|
|
|
pass_builder()->TurnOnDebug();
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
std::string contrib::AnalysisConfig::SerializeInfoCache() {
|
|
|
|
std::stringstream ss;
|
|
|
|
ss << model_dir_;
|
|
|
|
ss << prog_file_;
|
|
|
|
ss << params_file_;
|
|
|
|
|
|
|
|
ss << use_gpu_;
|
|
|
|
ss << device_id_;
|
|
|
|
ss << memory_pool_init_size_mb_;
|
|
|
|
|
|
|
|
ss << use_tensorrt_;
|
|
|
|
ss << tensorrt_workspace_size_;
|
|
|
|
ss << tensorrt_max_batchsize_;
|
|
|
|
ss << tensorrt_min_subgraph_size_;
|
|
|
|
|
|
|
|
ss << enable_memory_optim_;
|
|
|
|
ss << memory_optim_force_update_;
|
|
|
|
|
|
|
|
ss << use_mkldnn_;
|
|
|
|
for (auto &item : mkldnn_enabled_op_types_) ss << item;
|
|
|
|
ss << ";";
|
|
|
|
|
|
|
|
ss << model_from_memory_;
|
|
|
|
|
|
|
|
ss << enable_ir_optim_;
|
|
|
|
ss << use_feed_fetch_ops_;
|
|
|
|
ss << ir_debug_;
|
|
|
|
|
|
|
|
ss << specify_input_name_;
|
|
|
|
ss << cpu_math_library_num_threads_;
|
|
|
|
|
|
|
|
return ss.str();
|
|
|
|
}
|
|
|
|
|
|
|
|
void contrib::AnalysisConfig::SetCpuMathLibraryNumThreads(
|
|
|
|
int cpu_math_library_num_threads) {
|
|
|
|
cpu_math_library_num_threads_ = cpu_math_library_num_threads;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
float contrib::AnalysisConfig::fraction_of_gpu_memory_for_pool() const {
|
|
|
|
#ifdef PADDLE_WITH_CUDA
|
|
|
|
// Get the GPU memory details and calculate the fraction of memory for the
|
|
|
|
// GPU memory pool.
|
|
|
|
size_t gpu_used, gpu_available;
|
|
|
|
platform::GpuMemoryUsage(&gpu_used, &gpu_available);
|
|
|
|
double total_gpu_memory = (gpu_used + gpu_available) / 1024. / 1024.;
|
|
|
|
float fraction_of_gpu_memory =
|
|
|
|
static_cast<double>(memory_pool_init_size_mb()) / total_gpu_memory;
|
|
|
|
return fraction_of_gpu_memory;
|
|
|
|
#else
|
|
|
|
return 0.;
|
|
|
|
#endif
|
|
|
|
}
|
|
|
|
|
|
|
|
void contrib::AnalysisConfig::EnableMemoryOptim(bool force_update_cache) {
|
|
|
|
enable_memory_optim_ = true;
|
|
|
|
memory_optim_force_update_ = force_update_cache;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
bool contrib::AnalysisConfig::enable_memory_optim() const {
|
|
|
|
return enable_memory_optim_;
|
|
|
|
}
|
|
|
|
|
|
|
|
void contrib::AnalysisConfig::SetModelBuffer(const char *prog_buffer,
|
|
|
|
size_t prog_buffer_size,
|
|
|
|
const char *param_buffer,
|
|
|
|
size_t param_buffer_size) {
|
|
|
|
prog_file_ = std::string(prog_buffer, prog_buffer + prog_buffer_size);
|
|
|
|
params_file_ = std::string(param_buffer, param_buffer + param_buffer_size);
|
|
|
|
model_from_memory_ = true;
|
|
|
|
|
|
|
|
Update();
|
|
|
|
}
|
|
|
|
|
|
|
|
} // namespace paddle
|