refactor inference analysis api (#14634)

revert-15207-remove_op_handle_lock_and_fix_var
Yan Chunwei 6 years ago committed by GitHub
parent 99e6e8b00f
commit 875a07c32d
No known key found for this signature in database
GPG Key ID: 4AEE18F83AFDEB23

@ -134,6 +134,7 @@ if(WITH_GPU)
message(WARNING "Anakin needs CUDNN >= 7.0 to compile. Force WITH_ANAKIN=OFF")
set(WITH_ANAKIN OFF CACHE STRING "Anakin is valid only when CUDNN >= 7.0." FORCE)
endif()
add_definitions(-DWITH_ANAKIN)
endif()
if(WITH_ANAKIN)
# NOTICE(minqiyang): the end slash is important because $CUDNN_INCLUDE_DIR

@ -40,14 +40,14 @@ void NaiveExecutor::Prepare(Scope *scope, const ProgramDesc &program_desc,
void NaiveExecutor::Run() {
#ifndef PADDLE_ON_INFERENCE
LOG_FIRST_N(WARNING, 15) << "The NaiveExecutor can not work properly if the "
"cmake flag ON_INFER is not set.";
LOG_FIRST_N(WARNING, 15) << "Unlike the training phase, all the scopes and "
"variables will be reused to save the allocation "
"overhead.";
LOG_FIRST_N(WARNING, 15) << "Please re-compile the inference library by "
"setting the cmake flag ON_INFER=ON if you are "
"running Paddle Inference";
LOG_FIRST_N(WARNING, 5) << "The NaiveExecutor can not work properly if the "
"cmake flag ON_INFER is not set.";
LOG_FIRST_N(WARNING, 5) << "Unlike the training phase, all the scopes and "
"variables will be reused to save the allocation "
"overhead.";
LOG_FIRST_N(WARNING, 5) << "Please re-compile the inference library by "
"setting the cmake flag ON_INFER=ON if you are "
"running Paddle Inference";
#endif // PADDLE_ON_INFERENCE
for (auto &op : ops_) {
VLOG(3) << std::this_thread::get_id() << " run " << op->Type()

File diff suppressed because it is too large Load Diff

@ -33,6 +33,7 @@
#include "paddle/fluid/inference/utils/singleton.h"
#include "paddle/fluid/memory/memcpy.h"
#include "paddle/fluid/platform/cpu_helper.h"
#include "paddle/fluid/platform/gpu_info.h"
#include "paddle/fluid/platform/profiler.h"
DECLARE_bool(profile);
@ -59,8 +60,8 @@ bool AnalysisPredictor::Init(
if (FLAGS_profile) {
LOG(WARNING) << "Profiler is actived, might affect the performance";
LOG(INFO) << "You can turn off by set gflags '-profile false'";
auto tracking_device = config_.use_gpu ? platform::ProfilerState::kAll
: platform::ProfilerState::kCPU;
auto tracking_device = config_.use_gpu() ? platform::ProfilerState::kAll
: platform::ProfilerState::kCPU;
platform::EnableProfiler(tracking_device);
}
@ -112,7 +113,7 @@ bool AnalysisPredictor::PrepareProgram(
// Optimize the program, and load parameters and modify them in the
// scope_.
// This will change the scope_ address.
if (config_.enable_ir_optim) {
if (config_.ir_optim()) {
status_ir_optim_enabled_ = true;
OptimizeInferenceProgram();
} else {
@ -140,9 +141,9 @@ bool AnalysisPredictor::PrepareProgram(
return true;
}
bool AnalysisPredictor::CreateExecutor() {
if (config_.use_gpu) {
if (config_.use_gpu_) {
status_use_gpu_ = true;
place_ = paddle::platform::CUDAPlace(config_.device);
place_ = paddle::platform::CUDAPlace(config_.device_id_);
} else {
place_ = paddle::platform::CPUPlace();
}
@ -151,7 +152,7 @@ bool AnalysisPredictor::CreateExecutor() {
}
bool AnalysisPredictor::PrepareExecutor() {
executor_->Prepare(sub_scope_, *inference_program_, 0,
config_.use_feed_fetch_ops);
config_.use_feed_fetch_ops_);
PADDLE_ENFORCE_NOT_NULL(sub_scope_);
@ -250,7 +251,7 @@ bool AnalysisPredictor::SetFeed(const std::vector<PaddleTensor> &inputs,
}
input.set_lod(lod);
int idx = -1;
if (config_.specify_input_name) {
if (config_.specify_input_name_) {
auto name = inputs[i].name;
if (feed_names_.find(name) == feed_names_.end()) {
LOG(ERROR) << "feed names from program do not have name: [" << name
@ -314,22 +315,22 @@ bool AnalysisPredictor::GetFetch(std::vector<PaddleTensor> *outputs,
void AnalysisPredictor::OptimizeInferenceProgram() {
status_program_optimized_ = true;
argument_.SetUseGPU(config_.use_gpu);
argument_.SetGPUDeviceId(config_.device);
argument_.SetUseGPU(config_.use_gpu());
argument_.SetGPUDeviceId(config_.gpu_device_id());
argument_.SetModelFromMemory(config_.model_from_memory_);
// Analyze inference_program
if (!config_.model_dir.empty()) {
argument_.SetModelDir(config_.model_dir);
if (!config_.model_dir().empty()) {
argument_.SetModelDir(config_.model_dir());
} else {
PADDLE_ENFORCE(
!config_.param_file.empty(),
!config_.params_file().empty(),
"Either model_dir or (param_file, prog_file) should be set.");
PADDLE_ENFORCE(!config_.prog_file.empty());
argument_.SetModelProgramPath(config_.prog_file);
argument_.SetModelParamsPath(config_.param_file);
PADDLE_ENFORCE(!config_.prog_file().empty());
argument_.SetModelProgramPath(config_.prog_file());
argument_.SetModelParamsPath(config_.params_file());
}
if (config_.use_gpu && config_.use_tensorrt_) {
if (config_.use_gpu() && config_.tensorrt_engine_enabled()) {
argument_.SetUseTensorRT(true);
argument_.SetTensorRtWorkspaceSize(config_.tensorrt_workspace_size_);
argument_.SetTensorRtMaxBatchSize(config_.tensorrt_max_batchsize_);
@ -341,7 +342,7 @@ void AnalysisPredictor::OptimizeInferenceProgram() {
}
auto passes = config_.pass_builder()->AllPasses();
if (!config_.enable_ir_optim) passes.clear();
if (!config_.ir_optim()) passes.clear();
argument_.SetIrAnalysisPasses(passes);
argument_.SetScopeNotOwned(const_cast<framework::Scope *>(scope_.get()));
Analyzer().Run(&argument_);
@ -358,18 +359,26 @@ template <>
std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
AnalysisConfig, PaddleEngineKind::kAnalysis>(const AnalysisConfig &config) {
VLOG(3) << "create AnalysisConfig";
if (config.use_gpu) {
if (config.use_gpu()) {
// 1. GPU memeroy
PADDLE_ENFORCE_GT(
config.fraction_of_gpu_memory, 0.f,
"fraction_of_gpu_memory in the config should be set to range (0., 1.]");
PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);
PADDLE_ENFORCE_GT(config.memory_pool_init_size_mb(), 0.f);
PADDLE_ENFORCE_GE(config.gpu_device_id(), 0, "Invalid device id %d",
config.gpu_device_id());
std::vector<std::string> flags;
if (config.fraction_of_gpu_memory >= 0.0f ||
config.fraction_of_gpu_memory <= 0.95f) {
float fraction_of_gpu_memory = config.fraction_of_gpu_memory_for_pool();
if (fraction_of_gpu_memory > 0.95f) {
LOG(ERROR)
<< "Allocate too much memory for the GPU memory pool, assigned "
<< config.memory_pool_init_size_mb() << " MB";
LOG(ERROR)
<< "Try to shink the value by setting AnalysisConfig::EnableGpu(...)";
}
if (fraction_of_gpu_memory >= 0.0f || fraction_of_gpu_memory <= 0.95f) {
flags.push_back("dummpy");
std::string flag = "--fraction_of_gpu_memory_to_use=" +
std::to_string(config.fraction_of_gpu_memory);
std::to_string(fraction_of_gpu_memory);
flags.push_back(flag);
VLOG(3) << "set flag: " << flag;
framework::InitGflags(flags);
@ -443,22 +452,22 @@ bool AnalysisPredictor::ZeroCopyRun() {
bool AnalysisPredictor::LoadProgramDesc() {
// Initialize the inference program
std::string filename;
if (!config_.model_dir.empty()) {
filename = config_.model_dir + "/__model__";
} else if (!config_.prog_file.empty() && !config_.param_file.empty()) {
if (!config_.model_dir().empty()) {
filename = config_.model_dir() + "/__model__";
} else if (!config_.prog_file().empty() && !config_.params_file().empty()) {
// All parameters are saved in a single file.
// The file names should be consistent with that used
// in Python API `fluid.io.save_inference_model`.
filename = config_.prog_file;
filename = config_.prog_file();
} else {
if (config_.model_dir.empty() && config_.prog_file.empty()) {
if (config_.model_dir().empty() && config_.prog_file().empty()) {
LOG(ERROR)
<< "Either model_dir or (prog_file, param_file) should be set.";
return false;
}
LOG(ERROR) << string::Sprintf(
"not valid model path '%s' or program path '%s'.", config_.model_dir,
config_.param_file);
"not valid model path '%s' or program path '%s'.", config_.model_dir(),
config_.params_file());
return false;
}
@ -478,7 +487,7 @@ bool AnalysisPredictor::LoadProgramDesc() {
proto.ParseFromString(pb_content);
} else {
proto.ParseFromString(config_.prog_file);
proto.ParseFromString(config_.prog_file());
}
inference_program_.reset(new framework::ProgramDesc(proto));
return true;
@ -508,27 +517,27 @@ bool AnalysisPredictor::LoadParameters() {
new_var->SetLoDLevel(var->GetLoDLevel());
new_var->SetPersistable(true);
if (!config_.param_file.empty()) {
if (!config_.params_file().empty()) {
params.push_back(new_var->Name());
} else {
// append_op
framework::OpDesc *op = load_block->AppendOp();
op->SetType("load");
op->SetOutput("Out", {new_var->Name()});
op->SetAttr("file_path", {config_.model_dir + "/" + new_var->Name()});
op->SetAttr("file_path", {config_.model_dir() + "/" + new_var->Name()});
op->CheckAttrs();
}
}
}
if (!config_.param_file.empty()) {
if (!config_.params_file().empty()) {
// sort paramlist to have consistent ordering
std::sort(params.begin(), params.end());
// append just the load_combine op
framework::OpDesc *op = load_block->AppendOp();
op->SetType("load_combine");
op->SetOutput("Out", params);
op->SetAttr("file_path", {config_.param_file});
op->SetAttr("file_path", {config_.params_file()});
op->CheckAttrs();
}

@ -25,9 +25,9 @@ namespace paddle {
using contrib::AnalysisConfig;
TEST(AnalysisPredictor, analysis_off) {
AnalysisConfig config(false);
config.model_dir = FLAGS_dirname;
config.enable_ir_optim = false;
AnalysisConfig config;
config.SetModel(FLAGS_dirname);
config.SwitchIrOptim(false);
auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config);
auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get());
@ -55,14 +55,14 @@ TEST(AnalysisPredictor, analysis_off) {
}
TEST(AnalysisPredictor, analysis_on) {
AnalysisConfig config;
config.SetModel(FLAGS_dirname);
config.SwitchIrOptim(true);
#ifdef PADDLE_WITH_CUDA
AnalysisConfig config(true);
config.fraction_of_gpu_memory = 0.15;
config.EnableUseGpu(100, 0);
#else
AnalysisConfig config;
config.DisableGpu();
#endif
config.model_dir = FLAGS_dirname;
config.enable_ir_optim = true;
auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config);
auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get());
@ -89,7 +89,8 @@ TEST(AnalysisPredictor, analysis_on) {
}
// compare with NativePredictor
auto naive_predictor = CreatePaddlePredictor<NativeConfig>(config);
auto naive_predictor =
CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
std::vector<PaddleTensor> naive_outputs;
ASSERT_TRUE(naive_predictor->Run(inputs, &naive_outputs));
ASSERT_EQ(naive_outputs.size(), 1UL);
@ -98,9 +99,8 @@ TEST(AnalysisPredictor, analysis_on) {
TEST(AnalysisPredictor, ZeroCopy) {
AnalysisConfig config;
config.model_dir = FLAGS_dirname;
config.use_feed_fetch_ops = false;
config.SetModel(FLAGS_dirname);
config.SwitchUseFeedFetchOps(false);
auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
auto w0 = predictor->GetInputTensor("firstw");
@ -137,9 +137,9 @@ TEST(AnalysisPredictor, ZeroCopy) {
TEST(AnalysisPredictor, Clone) {
AnalysisConfig config;
config.model_dir = FLAGS_dirname;
config.use_feed_fetch_ops = true;
config.enable_ir_optim = true;
config.SetModel(FLAGS_dirname);
config.SwitchUseFeedFetchOps(true);
config.SwitchIrOptim(true);
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
predictors.emplace_back(CreatePaddlePredictor(config));

@ -19,8 +19,6 @@ limitations under the License. */
#pragma once
#define WITH_ANAKIN
#include <vector>
#include "framework/core/net/net.h"

@ -288,7 +288,7 @@ std::unique_ptr<PaddlePredictor> CreatePaddlePredictor<
VLOG(3) << "create NativePaddlePredictor";
if (config.use_gpu) {
// 1. GPU memeroy
PADDLE_ENFORCE_GT(
PADDLE_ENFORCE_GE(
config.fraction_of_gpu_memory, 0.f,
"fraction_of_gpu_memory in the config should be set to range (0., 1.]");
PADDLE_ENFORCE_GE(config.device, 0, "Invalid device id %d", config.device);

@ -295,7 +295,8 @@ TEST(inference_api_native, image_classification_gpu) {
#endif
TEST(PassBuilder, Delete) {
contrib::AnalysisConfig config(false);
contrib::AnalysisConfig config;
config.DisableGpu();
config.pass_builder()->DeletePass("attention_lstm_fuse_pass");
const auto& passes = config.pass_builder()->AllPasses();
auto it = std::find(passes.begin(), passes.end(), "attention_lstm_fuse_pass");

@ -36,12 +36,11 @@ namespace demo {
*/
void Main() {
std::unique_ptr<PaddlePredictor> predictor;
paddle::contrib::AnalysisConfig config(true);
config.param_file = FLAGS_modeldir + "/__params__";
config.prog_file = FLAGS_modeldir + "/__model__";
config.device = 0;
paddle::contrib::AnalysisConfig config;
config.EnableUseGpu(100, 0);
config.SetModel(FLAGS_modeldir + "/__params__",
FLAGS_modeldir + "/__model__");
config.EnableTensorRtEngine();
config.fraction_of_gpu_memory = 0.1; // set by yourself
predictor = CreatePaddlePredictor(config);
VLOG(3) << "begin to process data";

@ -40,15 +40,14 @@ using contrib::AnalysisConfig;
*/
void Main(bool use_gpu) {
std::unique_ptr<PaddlePredictor> predictor, analysis_predictor;
AnalysisConfig config(use_gpu);
config.param_file = FLAGS_modeldir + "/__params__";
config.prog_file = FLAGS_modeldir + "/__model__";
config.device = 0;
if (FLAGS_use_gpu) {
config.fraction_of_gpu_memory = 0.1; // set by yourself
AnalysisConfig config;
if (use_gpu) {
config.EnableUseGpu(100, 0);
}
config.SetModel(FLAGS_modeldir + "/__model__",
FLAGS_modeldir + "/__params__");
predictor = CreatePaddlePredictor<NativeConfig>(config);
predictor = CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
analysis_predictor = CreatePaddlePredictor(config);
// Just a single batch of data.

@ -34,26 +34,67 @@ class AnalysisPredictor;
namespace contrib {
// NOTE WIP, not stable yet.
struct AnalysisConfig : public NativeConfig {
explicit AnalysisConfig(bool use_gpu = false);
struct AnalysisConfig {
AnalysisConfig() = default;
explicit AnalysisConfig(const AnalysisConfig& other);
explicit AnalysisConfig(AnalysisConfig&& other);
explicit AnalysisConfig(const std::string& model_dir);
explicit AnalysisConfig(const std::string& prog_file,
const std::string& params_file);
// Model path related.
void SetModel(const std::string& model_dir) { model_dir_ = model_dir; }
void SetModel(const std::string& prog_file_path,
const std::string& params_file_path);
void SetProgFile(const std::string& x) { prog_file_ = x; }
void SetParamsFile(const std::string& x) { params_file_ = x; }
const std::string& model_dir() const { return model_dir_; }
const std::string& prog_file() const { return prog_file_; }
const std::string& params_file() const { return params_file_; }
// GPU related.
void EnableUseGpu(uint64_t memory_pool_init_size_mb, int device_id = 0);
void DisableGpu();
bool use_gpu() const { return use_gpu_; }
int gpu_device_id() const { return device_id_; }
int memory_pool_init_size_mb() const { return memory_pool_init_size_mb_; }
float fraction_of_gpu_memory_for_pool() const;
// Determine whether to perform graph optimization.
bool enable_ir_optim = true;
void SwitchIrOptim(int x = true) { enable_ir_optim_ = x; }
bool ir_optim() const { return enable_ir_optim_; }
// Get a pass builder for customize the passes in IR analysis phase.
PassStrategy* pass_builder() const;
void SwitchUseFeedFetchOps(int x = true) { use_feed_fetch_ops_ = x; }
bool use_feed_fetch_ops_enabled() const { return use_feed_fetch_ops_; }
// NOT stable yet.
bool use_feed_fetch_ops{true};
void SwitchSpecifyInputNames(bool x = true) { specify_input_name_ = x; }
bool specify_input_name() const { return specify_input_name_; }
void EnableTensorRtEngine(int workspace_size = 1 << 20,
int max_batch_size = 1, int min_subgraph_size = 3);
bool use_tensorrt() const { return use_tensorrt_; }
bool tensorrt_engine_enabled() const { return use_tensorrt_; }
void SwitchIrDebug(int x = true) { ir_debug_ = x; }
void EnableMKLDNN();
bool use_mkldnn() const { return use_mkldnn_; }
bool mkldnn_enabled() const { return use_mkldnn_; }
// Set and get the number of cpu math library threads.
void SetCpuMathLibraryNumThreads(int cpu_math_library_num_threads);
int cpu_math_library_num_threads() const {
return cpu_math_library_num_threads_;
}
NativeConfig ToNativeConfig() const {
NativeConfig config;
config.model_dir = model_dir_;
config.prog_file = prog_file_;
config.param_file = params_file_;
config.use_gpu = use_gpu_;
config.device = device_id_;
config.fraction_of_gpu_memory = fraction_of_gpu_memory_for_pool();
config.specify_input_name = specify_input_name_;
return config;
}
void SetMKLDNNOp(std::unordered_set<std::string> op_list) {
mkldnn_enabled_op_types_ = op_list;
}
@ -65,10 +106,29 @@ struct AnalysisConfig : public NativeConfig {
friend class ::paddle::AnalysisPredictor;
// NOTE just for developer, not an official API, easily to be broken.
// Get a pass builder for customize the passes in IR analysis phase.
PassStrategy* pass_builder() const;
protected:
// Update the config.
void Update();
std::string SerializeInfoCache();
protected:
// Model pathes.
std::string model_dir_;
std::string prog_file_;
std::string params_file_;
// GPU releated.
bool use_gpu_{false};
int device_id_{0};
uint64_t memory_pool_init_size_mb_{100}; // initial size is 100MB.
// TensorRT releated.
bool use_tensorrt_{false};
bool use_mkldnn_{false};
std::unordered_set<std::string> mkldnn_enabled_op_types_;
// For workspace_size, refer it from here:
// https://docs.nvidia.com/deeplearning/sdk/tensorrt-developer-guide/index.html#troubleshooting
int tensorrt_workspace_size_;
@ -82,17 +142,24 @@ struct AnalysisConfig : public NativeConfig {
// We set this variable to control the minimum number of nodes in the
// subgraph, 3 as default value.
int tensorrt_min_subgraph_size_{3};
std::unique_ptr<PassStrategy> pass_builder_;
bool use_mkldnn_{false};
std::unordered_set<std::string> mkldnn_enabled_op_types_;
bool model_from_memory_{false};
};
// Configurations for Anakin engine.
struct AnakinConfig : public PaddlePredictor::Config {
enum TargetType { NVGPU = 0, X86 };
int device;
std::string model_file;
int max_batch_size{-1};
TargetType target_type;
bool enable_ir_optim_{true};
bool use_feed_fetch_ops_{true};
bool ir_debug_{false};
bool specify_input_name_{false};
int cpu_math_library_num_threads_{1};
// A runtime cache, shouldn't be transferred to others.
std::string serialized_info_cache_;
mutable std::unique_ptr<PassStrategy> pass_builder_;
};
} // namespace contrib

@ -26,9 +26,8 @@ limitations under the License. */
#include <string>
#include <vector>
#include "paddle_api.h" // NOLINT
#ifndef WITH_ANAKIN
#include "paddle_analysis_config.h" // NOLINT
#else
#include "paddle_api.h" // NOLINT
#ifdef WITH_ANAKIN
#include "paddle_anakin_config.h" // NOLINT
#endif

@ -62,7 +62,12 @@ class PassStrategy : public PaddlePassBuilder {
// still some CPU kernels running in CPU mode.
virtual void EnableMKLDNN() = 0;
bool use_gpu() const { return use_gpu_; }
virtual ~PassStrategy() = default;
protected:
bool use_gpu_{false};
};
/*
@ -88,6 +93,7 @@ class CpuPassStrategy : public PassStrategy {
"conv_eltwiseadd_bn_fuse_pass", //
"is_test_pass", //
});
use_gpu_ = false;
}
virtual ~CpuPassStrategy() = default;
@ -126,10 +132,14 @@ class GpuPassStrategy : public PassStrategy {
"conv_elementwise_add2_act_fuse_pass", //
"conv_elementwise_add_fuse_pass", //
});
use_gpu_ = true;
}
GpuPassStrategy(const GpuPassStrategy &other)
: PassStrategy(other.AllPasses()) {}
: PassStrategy(other.AllPasses()) {
use_gpu_ = true;
}
void EnableMKLDNN() override;

@ -165,12 +165,9 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
void SetConfig(contrib::AnalysisConfig *cfg) {
cfg->prog_file = FLAGS_infer_model + "/__model__";
cfg->param_file = FLAGS_infer_model + "/param";
cfg->use_gpu = false;
cfg->device = 0;
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim(true);
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {

@ -105,11 +105,10 @@ void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
void SetConfig(AnalysisConfig *cfg) {
cfg->model_dir = FLAGS_infer_model;
cfg->use_gpu = false;
cfg->device = 0;
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
cfg->SetModel(FLAGS_infer_model);
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {

@ -76,11 +76,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
void SetConfig(contrib::AnalysisConfig *cfg) {
cfg->model_dir = FLAGS_infer_model;
cfg->use_gpu = false;
cfg->device = 0;
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
cfg->SetModel(FLAGS_infer_model);
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {

@ -84,13 +84,12 @@ void SetConfig(contrib::AnalysisConfig *cfg, bool memory_load = false) {
cfg->SetModelBuffer(&buffer_prog[0], buffer_prog.size(), &buffer_param[0],
buffer_param.size());
} else {
cfg->prog_file = FLAGS_infer_model + "/__model__";
cfg->param_file = FLAGS_infer_model + "/param";
cfg->SetModel(FLAGS_infer_model + "/__model__",
FLAGS_infer_model + "/param");
}
cfg->use_gpu = false;
cfg->device = 0;
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {

@ -21,12 +21,10 @@ namespace inference {
namespace analysis {
void SetConfig(AnalysisConfig *cfg) {
cfg->param_file = FLAGS_infer_model + "/params";
cfg->prog_file = FLAGS_infer_model + "/model";
cfg->use_gpu = false;
cfg->device = 0;
cfg->enable_ir_optim = true;
cfg->specify_input_name = true;
cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
cfg->DisableGpu();
cfg->SwitchIrOptim();
cfg->SwitchSpecifyInputNames();
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
}

@ -204,12 +204,10 @@ void PrepareZeroCopyInputs(ZeroCopyTensor *lod_attention_tensor,
}
void SetConfig(AnalysisConfig *cfg) {
cfg->prog_file = FLAGS_infer_model + "/__model__";
cfg->param_file = FLAGS_infer_model + "/param";
cfg->use_gpu = false;
cfg->device = 0;
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
@ -225,10 +223,10 @@ void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {
// Easy for profiling independently.
TEST(Analyzer_rnn1, profile) {
contrib::AnalysisConfig cfg(false);
contrib::AnalysisConfig cfg;
SetConfig(&cfg);
cfg.fraction_of_gpu_memory = 0.1;
cfg.pass_builder()->TurnOnDebug();
cfg.DisableGpu();
cfg.SwitchIrDebug();
std::vector<PaddleTensor> outputs;
std::vector<std::vector<PaddleTensor>> input_slots_all;
@ -293,16 +291,18 @@ TEST(Analyzer_rnn1, multi_thread) {
TEST(Analyzer_rnn1, ZeroCopy) {
AnalysisConfig config;
SetConfig(&config);
config.use_feed_fetch_ops = false;
config.SwitchUseFeedFetchOps(false);
PaddlePlace place;
auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
config.use_feed_fetch_ops = true;
auto native_predictor = CreatePaddlePredictor<NativeConfig>(config);
config.SwitchUseFeedFetchOps(true);
auto native_predictor =
CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
config.use_feed_fetch_ops = true; // the analysis predictor needs feed/fetch.
config.SwitchUseFeedFetchOps(
true); // the analysis predictor needs feed/fetch.
auto analysis_predictor = CreatePaddlePredictor<AnalysisConfig>(config);
#define NEW_TENSOR(name__) \
@ -362,7 +362,7 @@ TEST(Analyzer_rnn1, ZeroCopy) {
TEST(Analyzer_rnn1, ZeroCopyMultiThread) {
AnalysisConfig config;
SetConfig(&config);
config.use_feed_fetch_ops = false;
config.SwitchUseFeedFetchOps(false);
#define NEW_TENSOR(name__) \
auto name__##_tensor = predictor->GetInputTensor(#name__);

@ -105,12 +105,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
void SetConfig(AnalysisConfig *cfg) {
cfg->prog_file = FLAGS_infer_model + "/__model__";
cfg->param_file = FLAGS_infer_model + "/param";
cfg->use_gpu = false;
cfg->device = 0;
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
cfg->SetModel(FLAGS_infer_model + "/__model__", FLAGS_infer_model + "/param");
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {

@ -89,11 +89,10 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data,
}
void SetConfig(AnalysisConfig *cfg) {
cfg->model_dir = FLAGS_infer_model;
cfg->use_gpu = false;
cfg->device = 0;
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
cfg->SetModel(FLAGS_infer_model);
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {

@ -122,12 +122,9 @@ void PrepareInputs(std::vector<PaddleTensor> *input_slots, DataRecord *data) {
}
void SetConfig(AnalysisConfig *cfg) {
cfg->param_file = FLAGS_infer_model + "/params";
cfg->prog_file = FLAGS_infer_model + "/model";
cfg->use_gpu = false;
cfg->device = 0;
cfg->enable_ir_optim = true;
cfg->specify_input_name = true;
cfg->SetModel(FLAGS_infer_model + "/model", FLAGS_infer_model + "/params");
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->pass_builder()->TurnOnDebug();
cfg->SetCpuMathLibraryNumThreads(FLAGS_paddle_num_threads);
}

@ -47,11 +47,10 @@ struct DataReader {
};
void SetConfig(AnalysisConfig *cfg) {
cfg->model_dir = FLAGS_infer_model;
cfg->use_gpu = false;
cfg->device = 0;
cfg->specify_input_name = true;
cfg->enable_ir_optim = true;
cfg->SetModel(FLAGS_infer_model);
cfg->DisableGpu();
cfg->SwitchSpecifyInputNames();
cfg->SwitchIrOptim();
}
void SetInput(std::vector<std::vector<PaddleTensor>> *inputs) {

@ -51,12 +51,11 @@ Record ProcessALine(const std::string &line) {
}
void SetConfig(AnalysisConfig *cfg) {
cfg->param_file = FLAGS_infer_model + "/__params__";
cfg->prog_file = FLAGS_infer_model + "/__model__";
cfg->use_gpu = false;
cfg->device = 0;
cfg->enable_ir_optim = true;
cfg->specify_input_name = true;
cfg->SetModel(FLAGS_infer_model + "/__model__",
FLAGS_infer_model + "/__params__");
cfg->DisableGpu();
cfg->SwitchIrDebug();
cfg->SwitchSpecifyInputNames();
// TODO(TJ): fix fusion gru
cfg->pass_builder()->DeletePass("fc_gru_fuse_pass");
}

@ -64,19 +64,23 @@ std::ostream &operator<<(std::ostream &os,
num_spaces++;
os << *reinterpret_cast<const NativeConfig *>(&config);
if (!config.model_from_memory()) {
os << GenSpaces(num_spaces) << "prog_file: " << config.prog_file << "\n";
os << GenSpaces(num_spaces) << "param_file: " << config.param_file << "\n";
os << GenSpaces(num_spaces) << "prog_file: " << config.prog_file() << "\n";
os << GenSpaces(num_spaces) << "param_file: " << config.params_file()
<< "\n";
} else {
os << GenSpaces(num_spaces)
<< "prog_file and param_file: load from memory \n";
}
os << GenSpaces(num_spaces) << "enable_ir_optim: " << config.enable_ir_optim
os << GenSpaces(num_spaces) << "enable_ir_optim: " << config.ir_optim()
<< "\n";
os << GenSpaces(num_spaces) << "enable_ir_optim: " << config.ir_optim()
<< "\n";
os << GenSpaces(num_spaces)
<< "use_feed_fetch_ops: " << config.use_feed_fetch_ops_enabled() << "\n";
os << GenSpaces(num_spaces)
<< "use_feed_fetch_ops: " << config.use_feed_fetch_ops << "\n";
os << GenSpaces(num_spaces) << "use_tensorrt: " << config.use_tensorrt()
<< "use_tensorrt: " << config.tensorrt_engine_enabled() << "\n";
os << GenSpaces(num_spaces) << "use_mkldnn: " << config.mkldnn_enabled()
<< "\n";
os << GenSpaces(num_spaces) << "use_mkldnn: " << config.use_mkldnn() << "\n";
num_spaces--;
os << GenSpaces(num_spaces) << "}\n";
return os;

Some files were not shown because too many files have changed in this diff Show More

Loading…
Cancel
Save