You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/tests/api/full_ILSVRC2012_val_preproc...

110 lines
3.4 KiB

# copyright (c) 2019 paddlepaddle authors. all rights reserved.
#
# licensed under the apache license, version 2.0 (the "license");
# you may not use this file except in compliance with the license.
# you may obtain a copy of the license at
#
# http://www.apache.org/licenses/license-2.0
#
# unless required by applicable law or agreed to in writing, software
# distributed under the license is distributed on an "as is" basis,
# without warranties or conditions of any kind, either express or implied.
# see the license for the specific language governing permissions and
# limitations under the license.
import unittest
import os
import numpy as np
import time
import sys
import random
import functools
import contextlib
from PIL import Image, ImageEnhance
import math
random.seed(0)
np.random.seed(0)
DATA_DIM = 224
SIZE_FLOAT32 = 4
SIZE_INT64 = 8
DATA_DIR = './data/ILSVRC2012/data.bin'
img_mean = np.array([0.485, 0.456, 0.406]).reshape((3, 1, 1))
img_std = np.array([0.229, 0.224, 0.225]).reshape((3, 1, 1))
def resize_short(img, target_size):
percent = float(target_size) / min(img.size[0], img.size[1])
resized_width = int(round(img.size[0] * percent))
resized_height = int(round(img.size[1] * percent))
img = img.resize((resized_width, resized_height), Image.LANCZOS)
return img
def crop_image(img, target_size, center):
width, height = img.size
size = target_size
if center == True:
w_start = (width - size) / 2
h_start = (height - size) / 2
else:
w_start = np.random.randint(0, width - size + 1)
h_start = np.random.randint(0, height - size + 1)
w_end = w_start + size
h_end = h_start + size
img = img.crop((w_start, h_start, w_end, h_end))
return img
def process_image(img_path, mode, color_jitter, rotate):
img = Image.open(img_path)
img = resize_short(img, target_size=256)
img = crop_image(img, target_size=DATA_DIM, center=True)
if img.mode != 'RGB':
img = img.convert('RGB')
img = np.array(img).astype('float32').transpose((2, 0, 1)) / 255
img -= img_mean
img /= img_std
return img
def reader():
data_dir = DATA_DIR
file_list = os.path.join(data_dir, 'val_list.txt')
bin_file = os.path.join(data_dir, 'data.bin')
with open(file_list) as flist:
lines = [line.strip() for line in flist]
num_images = len(lines)
with open(bin_file, "w+b") as of:
of.seek(0)
num = np.array(int(num_images)).astype('int64')
of.write(num.tobytes())
for idx, line in enumerate(lines):
img_path, label = line.split()
img_path = os.path.join(data_dir, img_path)
if not os.path.exists(img_path):
continue
#save image(float32) to file
img = process_image(
img_path, 'val', color_jitter=False, rotate=False)
np_img = np.array(img)
of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 *
idx)
of.write(np_img.astype('float32').tobytes())
#save label(int64_t) to file
label_int = (int)(label)
np_label = np.array(label_int)
of.seek(SIZE_INT64 + SIZE_FLOAT32 * DATA_DIM * DATA_DIM * 3 *
num_images + idx * SIZE_INT64)
of.write(np_label.astype('int64').tobytes())
if __name__ == '__main__':
reader()