You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/inference/api/analysis_predictor_tester.cc

247 lines
7.8 KiB

// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
//
// Licensed under the Apache License, Version 2.0 (the "License");
// you may not use this file except in compliance with the License.
// You may obtain a copy of the License at
//
// http://www.apache.org/licenses/LICENSE-2.0
//
// Unless required by applicable law or agreed to in writing, software
// distributed under the License is distributed on an "AS IS" BASIS,
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
// See the License for the specific language governing permissions and
// limitations under the License.
#include "paddle/fluid/inference/api/analysis_predictor.h"
#include <glog/logging.h>
#include <gtest/gtest.h>
#include <thread> // NOLINT
#include "paddle/fluid/framework/ir/pass.h"
#include "paddle/fluid/inference/api/helper.h"
#include "paddle/fluid/inference/api/paddle_inference_api.h"
#include "paddle/fluid/inference/tests/api/tester_helper.h"
DEFINE_string(dirname, "", "dirname to tests.");
namespace paddle {
TEST(AnalysisPredictor, analysis_off) {
AnalysisConfig config;
config.SetModel(FLAGS_dirname);
config.SwitchIrOptim(false);
auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config);
auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get());
// Without analysis, the scope_ and sub_scope_ are created by predictor
// itself.
ASSERT_TRUE(predictor->scope_);
ASSERT_TRUE(predictor->sub_scope_);
ASSERT_EQ(predictor->scope_->parent(), nullptr);
ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get());
// ir is turned off, so program shouldn't be optimized.
ASSERT_FALSE(predictor->status_program_optimized_);
LOG(INFO) << "scope parameters " << predictor->scope_->LocalVarNames().size();
// 2. Dummy Input Data
int64_t data[4] = {1, 2, 3, 4};
PaddleTensor tensor;
tensor.shape = std::vector<int>({4, 1});
tensor.data.Reset(data, sizeof(data));
tensor.dtype = PaddleDType::INT64;
std::vector<PaddleTensor> inputs(4, tensor);
std::vector<PaddleTensor> outputs;
ASSERT_TRUE(predictor->Run(inputs, &outputs));
}
TEST(AnalysisPredictor, analysis_on) {
AnalysisConfig config;
config.SetModel(FLAGS_dirname);
config.SwitchIrOptim(true);
#ifdef PADDLE_WITH_CUDA
config.EnableUseGpu(100, 0);
#else
config.DisableGpu();
#endif
auto _predictor = CreatePaddlePredictor<AnalysisConfig>(config);
auto* predictor = static_cast<AnalysisPredictor*>(_predictor.get());
ASSERT_TRUE(predictor->scope_);
ASSERT_TRUE(predictor->sub_scope_);
ASSERT_EQ(predictor->scope_->parent(), nullptr);
ASSERT_EQ(predictor->sub_scope_->parent(), predictor->scope_.get());
// ir is turned on, so program should be optimized.
ASSERT_TRUE(predictor->status_program_optimized_);
// 2. Dummy Input Data
int64_t data[4] = {1, 2, 3, 4};
PaddleTensor tensor;
tensor.shape = std::vector<int>({4, 1});
tensor.data.Reset(data, sizeof(data));
tensor.dtype = PaddleDType::INT64;
std::vector<PaddleTensor> inputs(4, tensor);
std::vector<PaddleTensor> outputs;
ASSERT_TRUE(predictor->Run(inputs, &outputs));
for (auto& output : outputs) {
LOG(INFO) << inference::DescribeTensor(output);
}
// compare with NativePredictor
auto naive_predictor =
CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
std::vector<PaddleTensor> naive_outputs;
ASSERT_TRUE(naive_predictor->Run(inputs, &naive_outputs));
ASSERT_EQ(naive_outputs.size(), 1UL);
inference::CompareTensor(outputs.front(), naive_outputs.front());
}
TEST(AnalysisPredictor, ZeroCopy) {
AnalysisConfig config;
config.SetModel(FLAGS_dirname);
config.SwitchUseFeedFetchOps(false);
auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
auto w0 = predictor->GetInputTensor("firstw");
auto w1 = predictor->GetInputTensor("secondw");
auto w2 = predictor->GetInputTensor("thirdw");
auto w3 = predictor->GetInputTensor("forthw");
w0->Reshape({4, 1});
w1->Reshape({4, 1});
w2->Reshape({4, 1});
w3->Reshape({4, 1});
auto* w0_data = w0->mutable_data<int64_t>(PaddlePlace::kCPU);
auto* w1_data = w1->mutable_data<int64_t>(PaddlePlace::kCPU);
auto* w2_data = w2->mutable_data<int64_t>(PaddlePlace::kCPU);
auto* w3_data = w3->mutable_data<int64_t>(PaddlePlace::kCPU);
for (int i = 0; i < 4; i++) {
w0_data[i] = i;
w1_data[i] = i;
w2_data[i] = i;
w3_data[i] = i;
}
predictor->ZeroCopyRun();
auto out = predictor->GetOutputTensor("fc_1.tmp_2");
PaddlePlace place;
int size = 0;
auto* out_data = out->data<float>(&place, &size);
LOG(INFO) << "output size: " << size / sizeof(float);
LOG(INFO) << "output_data: " << out_data;
}
TEST(AnalysisPredictor, Clone) {
AnalysisConfig config;
config.SetModel(FLAGS_dirname);
config.SwitchUseFeedFetchOps(true);
config.SwitchIrOptim(true);
std::vector<std::unique_ptr<PaddlePredictor>> predictors;
predictors.emplace_back(CreatePaddlePredictor(config));
LOG(INFO) << "************** to clone ************************";
const int num_threads = 3;
for (int i = 1; i < num_threads; i++) {
predictors.emplace_back(predictors.front()->Clone());
}
auto* root_scope =
static_cast<AnalysisPredictor*>(predictors[0].get())->scope();
ASSERT_FALSE(root_scope->kids().empty());
LOG(INFO) << "***** scope ******\n"
<< framework::GenScopeTreeDebugInfo(root_scope);
// 2. Dummy Input Data
int64_t data[4] = {1, 2, 3, 4};
PaddleTensor tensor;
tensor.shape = std::vector<int>({4, 1});
tensor.data.Reset(data, sizeof(data));
tensor.dtype = PaddleDType::INT64;
std::vector<PaddleTensor> inputs(4, tensor);
std::vector<PaddleTensor> outputs;
predictors[0]->Run(inputs, &outputs);
LOG(INFO) << "Run with single thread";
for (int i = 0; i < num_threads; i++) {
LOG(INFO) << "run predictor " << i;
ASSERT_TRUE(predictors[i]->Run(inputs, &outputs));
}
LOG(INFO) << "Run with multiple threads";
std::vector<std::thread> threads;
for (int i = 0; i < num_threads; i++) {
threads.emplace_back([&predictors, &inputs, i] {
LOG(INFO) << "thread #" << i << " running";
std::vector<PaddleTensor> outputs;
auto predictor = predictors.front()->Clone();
for (int j = 0; j < 10; j++) {
ASSERT_TRUE(predictor->Run(inputs, &outputs));
}
});
}
for (auto& t : threads) {
t.join();
}
}
TEST(AnalysisPredictor, memory_optim) {
AnalysisConfig config(FLAGS_dirname);
config.DisableGpu();
config.EnableMemoryOptim(true);
config.pass_builder()->TurnOnDebug();
auto native_predictor =
CreatePaddlePredictor<NativeConfig>(config.ToNativeConfig());
// 2. Dummy Input Data
int64_t data[4] = {1, 2, 3, 4};
PaddleTensor tensor;
tensor.shape = std::vector<int>({4, 1});
tensor.data.Reset(data, sizeof(data));
tensor.dtype = PaddleDType::INT64;
std::vector<PaddleTensor> inputs(4, tensor);
std::vector<PaddleTensor> output, output1;
{
// The first predictor help to cache the memory optimize strategy.
auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
LOG(INFO) << "serialized program: " << predictor->GetSeriazlizedProgram();
ASSERT_FALSE(predictor->GetSeriazlizedProgram().empty());
// Run several times to check the parameters are not reused by mistake.
for (int i = 0; i < 5; i++) {
ASSERT_TRUE(predictor->Run(inputs, &output));
}
}
{
output.clear();
// The second predictor to perform memory optimization.
config.EnableMemoryOptim(false);
auto predictor = CreatePaddlePredictor<AnalysisConfig>(config);
// Run with memory optimization
ASSERT_TRUE(predictor->Run(inputs, &output));
}
// Run native
ASSERT_TRUE(native_predictor->Run(inputs, &output1));
LOG(INFO) << "the output " << inference::DescribeTensor(output.front());
LOG(INFO) << "the native output "
<< inference::DescribeTensor(output1.front());
inference::CompareResult(output, output1);
}
} // namespace paddle