|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import numpy
|
|
|
|
import unittest
|
|
|
|
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle
|
|
|
|
import paddle.dataset.mnist as mnist
|
|
|
|
import paddle.dataset.wmt16 as wmt16
|
|
|
|
|
|
|
|
|
|
|
|
def simple_fc_net(use_feed):
|
|
|
|
if use_feed:
|
|
|
|
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
|
|
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
else:
|
|
|
|
reader = fluid.layers.open_files(
|
|
|
|
filenames=['./mnist.recordio'],
|
|
|
|
shapes=[[-1, 784], [-1, 1]],
|
|
|
|
lod_levels=[0, 0],
|
|
|
|
dtypes=['float32', 'int64'],
|
|
|
|
thread_num=1,
|
|
|
|
for_parallel=True)
|
|
|
|
reader = fluid.layers.io.double_buffer(reader)
|
|
|
|
img, label = fluid.layers.read_file(reader)
|
|
|
|
hidden = img
|
|
|
|
for _ in xrange(4):
|
|
|
|
hidden = fluid.layers.fc(
|
|
|
|
hidden,
|
|
|
|
size=200,
|
|
|
|
act='tanh',
|
|
|
|
bias_attr=fluid.ParamAttr(
|
|
|
|
initializer=fluid.initializer.Constant(value=1.0)))
|
|
|
|
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
|
|
|
|
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
|
|
loss = fluid.layers.mean(loss)
|
|
|
|
return loss
|
|
|
|
|
|
|
|
|
|
|
|
def fc_with_batchnorm(use_feed):
|
|
|
|
if use_feed:
|
|
|
|
img = fluid.layers.data(name='image', shape=[784], dtype='float32')
|
|
|
|
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
|
|
|
else:
|
|
|
|
reader = fluid.layers.open_files(
|
|
|
|
filenames=['mnist.recordio'],
|
|
|
|
shapes=[[-1, 784], [-1, 1]],
|
|
|
|
lod_levels=[0, 0],
|
|
|
|
dtypes=['float32', 'int64'],
|
|
|
|
thread_num=1,
|
|
|
|
for_parallel=True)
|
|
|
|
reader = fluid.layers.io.double_buffer(reader)
|
|
|
|
img, label = fluid.layers.read_file(reader)
|
|
|
|
|
|
|
|
hidden = img
|
|
|
|
for _ in xrange(1):
|
|
|
|
hidden = fluid.layers.fc(
|
|
|
|
hidden,
|
|
|
|
size=200,
|
|
|
|
act='tanh',
|
|
|
|
bias_attr=fluid.ParamAttr(
|
|
|
|
initializer=fluid.initializer.Constant(value=1.0)))
|
|
|
|
|
|
|
|
hidden = fluid.layers.batch_norm(input=hidden)
|
|
|
|
|
|
|
|
prediction = fluid.layers.fc(hidden, size=10, act='softmax')
|
|
|
|
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
|
|
loss = fluid.layers.mean(loss)
|
|
|
|
return loss
|
|
|
|
|
|
|
|
|
|
|
|
def squeeze_excitation(input, num_channels, reduction_ratio):
|
|
|
|
# pool = fluid.layers.pool2d(
|
|
|
|
# input=input, pool_size=0, pool_type='avg', global_pooling=True)
|
|
|
|
conv = input
|
|
|
|
shape = conv.shape
|
|
|
|
reshape = fluid.layers.reshape(
|
|
|
|
x=conv, shape=[-1, shape[1], shape[2] * shape[3]])
|
|
|
|
pool = fluid.layers.reduce_mean(input=reshape, dim=2)
|
|
|
|
|
|
|
|
squeeze = fluid.layers.fc(input=pool,
|
|
|
|
size=num_channels / reduction_ratio,
|
|
|
|
act='relu')
|
|
|
|
excitation = fluid.layers.fc(input=squeeze,
|
|
|
|
size=num_channels,
|
|
|
|
act='sigmoid')
|
|
|
|
scale = fluid.layers.elementwise_mul(x=input, y=excitation, axis=0)
|
|
|
|
return scale
|
|
|
|
|
|
|
|
|
|
|
|
def conv_bn_layer(input, num_filters, filter_size, stride=1, groups=1,
|
|
|
|
act=None):
|
|
|
|
conv = fluid.layers.conv2d(
|
|
|
|
input=input,
|
|
|
|
num_filters=num_filters,
|
|
|
|
filter_size=filter_size,
|
|
|
|
stride=stride,
|
|
|
|
padding=(filter_size - 1) / 2,
|
|
|
|
groups=groups,
|
|
|
|
act=None,
|
|
|
|
bias_attr=False)
|
|
|
|
return fluid.layers.batch_norm(input=conv, act=act, momentum=0.1)
|
|
|
|
|
|
|
|
|
|
|
|
def shortcut(input, ch_out, stride):
|
|
|
|
ch_in = input.shape[1]
|
|
|
|
if ch_in != ch_out:
|
|
|
|
if stride == 1:
|
|
|
|
filter_size = 1
|
|
|
|
else:
|
|
|
|
filter_size = 3
|
|
|
|
return conv_bn_layer(input, ch_out, filter_size, stride)
|
|
|
|
else:
|
|
|
|
return input
|
|
|
|
|
|
|
|
|
|
|
|
def bottleneck_block(input, num_filters, stride, cardinality, reduction_ratio):
|
|
|
|
# The number of first 1x1 convolutional channels for each bottleneck build block
|
|
|
|
# was halved to reduce the compution cost.
|
|
|
|
conv0 = conv_bn_layer(
|
|
|
|
input=input, num_filters=num_filters, filter_size=1, act='relu')
|
|
|
|
conv1 = conv_bn_layer(
|
|
|
|
input=conv0,
|
|
|
|
num_filters=num_filters * 2,
|
|
|
|
filter_size=3,
|
|
|
|
stride=stride,
|
|
|
|
groups=cardinality,
|
|
|
|
act='relu')
|
|
|
|
conv2 = conv_bn_layer(
|
|
|
|
input=conv1, num_filters=num_filters * 2, filter_size=1, act=None)
|
|
|
|
scale = squeeze_excitation(
|
|
|
|
input=conv2,
|
|
|
|
num_channels=num_filters * 2,
|
|
|
|
reduction_ratio=reduction_ratio)
|
|
|
|
|
|
|
|
short = shortcut(input, num_filters * 2, stride)
|
|
|
|
|
|
|
|
return fluid.layers.elementwise_add(x=short, y=scale, act='relu')
|
|
|
|
|
|
|
|
|
|
|
|
def SE_ResNeXt50Small(batch_size=2, use_feed=False):
|
|
|
|
assert not use_feed, "SE_ResNeXt doesn't support feed yet"
|
|
|
|
|
|
|
|
img = fluid.layers.fill_constant(
|
|
|
|
shape=[batch_size, 3, 224, 224], dtype='float32', value=0.0)
|
|
|
|
label = fluid.layers.fill_constant(
|
|
|
|
shape=[batch_size, 1], dtype='int64', value=0.0)
|
|
|
|
|
|
|
|
conv = conv_bn_layer(
|
|
|
|
input=img, num_filters=16, filter_size=3, stride=2, act='relu')
|
|
|
|
conv = conv_bn_layer(
|
|
|
|
input=conv, num_filters=16, filter_size=3, stride=1, act='relu')
|
|
|
|
conv = conv_bn_layer(
|
|
|
|
input=conv, num_filters=16, filter_size=3, stride=1, act='relu')
|
|
|
|
conv = fluid.layers.pool2d(
|
|
|
|
input=conv, pool_size=3, pool_stride=2, pool_padding=1, pool_type='max')
|
|
|
|
|
|
|
|
cardinality = 32
|
|
|
|
reduction_ratio = 16
|
|
|
|
depth = [3, 4, 6, 3]
|
|
|
|
num_filters = [128, 256, 512, 1024]
|
|
|
|
|
|
|
|
for block in range(len(depth)):
|
|
|
|
for i in range(depth[block]):
|
|
|
|
conv = bottleneck_block(
|
|
|
|
input=conv,
|
|
|
|
num_filters=num_filters[block],
|
|
|
|
stride=2 if i == 0 and block != 0 else 1,
|
|
|
|
cardinality=cardinality,
|
|
|
|
reduction_ratio=reduction_ratio)
|
|
|
|
|
|
|
|
shape = conv.shape
|
|
|
|
reshape = fluid.layers.reshape(
|
|
|
|
x=conv, shape=[-1, shape[1], shape[2] * shape[3]])
|
|
|
|
pool = fluid.layers.reduce_mean(input=reshape, dim=2)
|
|
|
|
dropout = fluid.layers.dropout(x=pool, dropout_prob=0.2)
|
|
|
|
# Classifier layer:
|
|
|
|
prediction = fluid.layers.fc(input=dropout, size=1000, act='softmax')
|
|
|
|
loss = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
|
|
loss = fluid.layers.mean(loss)
|
|
|
|
return loss
|
|
|
|
|
|
|
|
|
|
|
|
import time
|
|
|
|
|
|
|
|
|
|
|
|
class TestParallelExecutorBase(unittest.TestCase):
|
|
|
|
def check_network_convergence(self,
|
|
|
|
method,
|
|
|
|
memory_opt=True,
|
|
|
|
iter=50,
|
|
|
|
batch_size=None,
|
|
|
|
allow_op_delay=False,
|
|
|
|
feed_dict=None,
|
|
|
|
seed=None,
|
|
|
|
use_parallel_executor=True):
|
|
|
|
def run_executor(exe, feed, fetch_list, program=None):
|
|
|
|
if isinstance(exe, fluid.ParallelExecutor):
|
|
|
|
res = exe.run(fetch_list=fetch_list, feed=feed)
|
|
|
|
elif isinstance(exe, fluid.Executor):
|
|
|
|
if program is None:
|
|
|
|
program = fluid.default_main_program()
|
|
|
|
res = exe.run(program=program, feed=feed, fetch_list=fetch_list)
|
|
|
|
else:
|
|
|
|
raise ValueError('Unkown type exe')
|
|
|
|
return res
|
|
|
|
|
|
|
|
main = fluid.Program()
|
|
|
|
startup = fluid.Program()
|
|
|
|
startup.random_seed = 1 # Fix random seed
|
|
|
|
with fluid.program_guard(main, startup):
|
|
|
|
if seed is not None:
|
|
|
|
startup.random_seed = seed
|
|
|
|
loss = method(use_feed=feed_dict is not None)
|
|
|
|
adam = fluid.optimizer.Adam()
|
|
|
|
adam.minimize(loss)
|
|
|
|
if memory_opt:
|
|
|
|
fluid.memory_optimize(main)
|
|
|
|
place = fluid.CUDAPlace(0)
|
|
|
|
startup_exe = fluid.Executor(place)
|
|
|
|
startup_exe.run(startup)
|
|
|
|
|
|
|
|
if use_parallel_executor:
|
|
|
|
exe = fluid.ParallelExecutor(
|
|
|
|
True, loss_name=loss.name, allow_op_delay=allow_op_delay)
|
|
|
|
else:
|
|
|
|
exe = fluid.Executor(place=place)
|
|
|
|
|
|
|
|
if batch_size is not None:
|
|
|
|
batch_size *= fluid.core.get_cuda_device_count()
|
|
|
|
begin = time.time()
|
|
|
|
first_loss, = run_executor(
|
|
|
|
exe=exe, feed=feed_dict, fetch_list=[loss.name])
|
|
|
|
first_loss = numpy.array(first_loss)
|
|
|
|
|
|
|
|
for i in xrange(iter):
|
|
|
|
run_executor(exe=exe, feed=feed_dict, fetch_list=[])
|
|
|
|
|
|
|
|
last_loss, = run_executor(
|
|
|
|
exe=exe, feed=feed_dict, fetch_list=[loss.name])
|
|
|
|
end = time.time()
|
|
|
|
|
|
|
|
if batch_size is not None:
|
|
|
|
print "%.4f Instance per second" % (
|
|
|
|
(batch_size * iter + 2) / (end - begin))
|
|
|
|
|
|
|
|
last_loss = numpy.array(last_loss)
|
|
|
|
|
|
|
|
print first_loss, last_loss
|
|
|
|
# self.assertGreater(first_loss[0], last_loss[0])
|
|
|
|
return first_loss, last_loss
|
|
|
|
|
|
|
|
|
|
|
|
class TestMNIST(TestParallelExecutorBase):
|
|
|
|
@classmethod
|
|
|
|
def setUpClass(cls):
|
|
|
|
# Convert mnist to recordio file
|
|
|
|
with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
reader = paddle.batch(mnist.train(), batch_size=4)
|
|
|
|
feeder = fluid.DataFeeder(
|
|
|
|
feed_list=[ # order is image and label
|
|
|
|
fluid.layers.data(
|
|
|
|
name='image', shape=[784]),
|
|
|
|
fluid.layers.data(
|
|
|
|
name='label', shape=[1], dtype='int64'),
|
|
|
|
],
|
|
|
|
place=fluid.CPUPlace())
|
|
|
|
fluid.recordio_writer.convert_reader_to_recordio_file(
|
|
|
|
'./mnist.recordio', reader, feeder)
|
|
|
|
|
|
|
|
def check_simple_fc_convergence(self):
|
|
|
|
self.check_network_convergence(simple_fc_net)
|
|
|
|
self.check_network_convergence(simple_fc_net, allow_op_delay=True)
|
|
|
|
|
|
|
|
img = numpy.zeros(shape=[32, 784], dtype='float32')
|
|
|
|
label = numpy.ones(shape=[32, 1], dtype='int64')
|
|
|
|
self.check_network_convergence(
|
|
|
|
simple_fc_net, feed_dict={"image": img,
|
|
|
|
"label": label})
|
|
|
|
|
|
|
|
def test_simple_fc(self):
|
|
|
|
self.check_simple_fc_convergence()
|
|
|
|
|
|
|
|
def check_simple_fc_parallel_accuracy(self):
|
|
|
|
img = numpy.zeros(shape=[32, 784], dtype='float32')
|
|
|
|
label = numpy.ones(shape=[32, 1], dtype='int64')
|
|
|
|
single_first_loss, single_last_loss = self.check_network_convergence(
|
|
|
|
method=simple_fc_net,
|
|
|
|
seed=1000,
|
|
|
|
feed_dict={"image": img,
|
|
|
|
"label": label},
|
|
|
|
use_parallel_executor=False)
|
|
|
|
parallel_first_loss, parallel_last_loss = self.check_network_convergence(
|
|
|
|
method=simple_fc_net,
|
|
|
|
seed=1000,
|
|
|
|
feed_dict={"image": img,
|
|
|
|
"label": label},
|
|
|
|
use_parallel_executor=True)
|
|
|
|
|
|
|
|
for p_f in parallel_first_loss:
|
|
|
|
self.assertAlmostEquals(p_f, single_first_loss[0], delta=1e-6)
|
|
|
|
for p_l in parallel_last_loss:
|
|
|
|
self.assertAlmostEquals(p_l, single_last_loss[0], delta=1e-6)
|
|
|
|
|
|
|
|
def test_simple_fc_parallel_accuracy(self):
|
|
|
|
self.check_simple_fc_parallel_accuracy()
|
|
|
|
|
|
|
|
def check_batchnorm_fc_convergence(self):
|
|
|
|
self.check_network_convergence(fc_with_batchnorm)
|
|
|
|
img = numpy.zeros(shape=[32, 784], dtype='float32')
|
|
|
|
label = numpy.ones(shape=[32, 1], dtype='int64')
|
|
|
|
self.check_network_convergence(
|
|
|
|
fc_with_batchnorm, feed_dict={"image": img,
|
|
|
|
"label": label})
|
|
|
|
|
|
|
|
def test_batchnorm_fc(self):
|
|
|
|
self.check_batchnorm_fc_convergence()
|
|
|
|
|
|
|
|
|
|
|
|
class TestResnet(TestParallelExecutorBase):
|
|
|
|
# @classmethod
|
|
|
|
# def setUpClass(cls):
|
|
|
|
# # import os
|
|
|
|
# # if os.path.exists('./flowers.recordio'):
|
|
|
|
# # return
|
|
|
|
# with fluid.program_guard(fluid.Program(), fluid.Program()):
|
|
|
|
# reader = paddle.batch(flowers.train(), batch_size=4)
|
|
|
|
# feeder = fluid.DataFeeder(
|
|
|
|
# feed_list=[
|
|
|
|
# fluid.layers.data(
|
|
|
|
# name='image', shape=[3, 224, 224]),
|
|
|
|
# fluid.layers.data(
|
|
|
|
# name='label', shape=[1], dtype='int64'),
|
|
|
|
# ],
|
|
|
|
# place=fluid.CPUPlace())
|
|
|
|
# fluid.recordio_writer.convert_reader_to_recordio_file(
|
|
|
|
# "./flowers.recordio", reader, feeder, compressor=fluid.core.RecordIOWriter.Compressor.NoCompress)
|
|
|
|
|
|
|
|
def check_resnet_convergence(self):
|
|
|
|
import functools
|
|
|
|
batch_size = 2
|
|
|
|
self.check_network_convergence(
|
|
|
|
functools.partial(
|
|
|
|
SE_ResNeXt50Small, batch_size=batch_size),
|
|
|
|
iter=20,
|
|
|
|
batch_size=batch_size)
|
|
|
|
|
|
|
|
def test_resnet(self):
|
|
|
|
self.check_resnet_convergence()
|
|
|
|
|
|
|
|
|
|
|
|
class ModelHyperParams(object):
|
|
|
|
# Dictionary size for source and target language. This model directly uses
|
|
|
|
# paddle.dataset.wmt16 in which <bos>, <eos> and <unk> token has
|
|
|
|
# alreay been added, but the <pad> token is not added. Transformer requires
|
|
|
|
# sequences in a mini-batch are padded to have the same length. A <pad> token is
|
|
|
|
# added into the original dictionary in paddle.dateset.wmt16.
|
|
|
|
|
|
|
|
# size of source word dictionary.
|
|
|
|
src_vocab_size = 10000
|
|
|
|
# index for <pad> token in source language.
|
|
|
|
src_pad_idx = src_vocab_size
|
|
|
|
|
|
|
|
# size of target word dictionay
|
|
|
|
trg_vocab_size = 10000
|
|
|
|
# index for <pad> token in target language.
|
|
|
|
trg_pad_idx = trg_vocab_size
|
|
|
|
|
|
|
|
# position value corresponding to the <pad> token.
|
|
|
|
pos_pad_idx = 0
|
|
|
|
|
|
|
|
# max length of sequences. It should plus 1 to include position
|
|
|
|
# padding token for position encoding.
|
|
|
|
max_length = 50
|
|
|
|
|
|
|
|
# the dimension for word embeddings, which is also the last dimension of
|
|
|
|
# the input and output of multi-head attention, position-wise feed-forward
|
|
|
|
# networks, encoder and decoder.
|
|
|
|
|
|
|
|
d_model = 512
|
|
|
|
# size of the hidden layer in position-wise feed-forward networks.
|
|
|
|
d_inner_hid = 1024
|
|
|
|
# the dimension that keys are projected to for dot-product attention.
|
|
|
|
d_key = 64
|
|
|
|
# the dimension that values are projected to for dot-product attention.
|
|
|
|
d_value = 64
|
|
|
|
# number of head used in multi-head attention.
|
|
|
|
n_head = 8
|
|
|
|
# number of sub-layers to be stacked in the encoder and decoder.
|
|
|
|
n_layer = 6
|
|
|
|
# dropout rate used by all dropout layers.
|
|
|
|
dropout = 0.1
|
|
|
|
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
|
|
|
|
|
|
|
|
def prepare_batch_input(insts, src_pad_idx, trg_pad_idx, n_head):
|
|
|
|
"""
|
|
|
|
Pad the instances to the max sequence length in batch, and generate the
|
|
|
|
corresponding position data and attention bias. Then, convert the numpy
|
|
|
|
data to tensors and return a dict mapping names to tensors.
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __pad_batch_data(insts,
|
|
|
|
pad_idx,
|
|
|
|
is_target=False,
|
|
|
|
return_pos=True,
|
|
|
|
return_attn_bias=True,
|
|
|
|
return_max_len=True):
|
|
|
|
"""
|
|
|
|
Pad the instances to the max sequence length in batch, and generate the
|
|
|
|
corresponding position data and attention bias.
|
|
|
|
"""
|
|
|
|
return_list = []
|
|
|
|
max_len = max(len(inst) for inst in insts)
|
|
|
|
inst_data = np.array(
|
|
|
|
[inst + [pad_idx] * (max_len - len(inst)) for inst in insts])
|
|
|
|
return_list += [inst_data.astype("int64").reshape([-1, 1])]
|
|
|
|
if return_pos:
|
|
|
|
inst_pos = np.array([[
|
|
|
|
pos_i + 1 if w_i != pad_idx else 0
|
|
|
|
for pos_i, w_i in enumerate(inst)
|
|
|
|
] for inst in inst_data])
|
|
|
|
|
|
|
|
return_list += [inst_pos.astype("int64").reshape([-1, 1])]
|
|
|
|
if return_attn_bias:
|
|
|
|
if is_target:
|
|
|
|
# This is used to avoid attention on paddings and subsequent
|
|
|
|
# words.
|
|
|
|
slf_attn_bias_data = np.ones((inst_data.shape[0], max_len,
|
|
|
|
max_len))
|
|
|
|
slf_attn_bias_data = np.triu(slf_attn_bias_data, 1).reshape(
|
|
|
|
[-1, 1, max_len, max_len])
|
|
|
|
slf_attn_bias_data = np.tile(slf_attn_bias_data,
|
|
|
|
[1, n_head, 1, 1]) * [-1e9]
|
|
|
|
else:
|
|
|
|
# This is used to avoid attention on paddings.
|
|
|
|
slf_attn_bias_data = np.array([[0] * len(inst) + [-1e9] *
|
|
|
|
(max_len - len(inst))
|
|
|
|
for inst in insts])
|
|
|
|
slf_attn_bias_data = np.tile(
|
|
|
|
slf_attn_bias_data.reshape([-1, 1, 1, max_len]),
|
|
|
|
[1, n_head, max_len, 1])
|
|
|
|
return_list += [slf_attn_bias_data.astype("float32")]
|
|
|
|
if return_max_len:
|
|
|
|
return_list += [max_len]
|
|
|
|
return return_list if len(return_list) > 1 else return_list[0]
|
|
|
|
|
|
|
|
def data_to_tensor(data_list, name_list, input_dict, place):
|
|
|
|
assert len(data_list) == len(name_list)
|
|
|
|
for i in range(len(name_list)):
|
|
|
|
tensor = fluid.LoDTensor()
|
|
|
|
tensor.set(data_list[i], place)
|
|
|
|
input_dict[name_list[i]] = tensor
|
|
|
|
|
|
|
|
src_word, src_pos, src_slf_attn_bias, src_max_len = __pad_batch_data(
|
|
|
|
[inst[0] for inst in insts], src_pad_idx, is_target=False)
|
|
|
|
trg_word, trg_pos, trg_slf_attn_bias, trg_max_len = __pad_batch_data(
|
|
|
|
[inst[1] for inst in insts], trg_pad_idx, is_target=True)
|
|
|
|
trg_src_attn_bias = np.tile(src_slf_attn_bias[:, :, ::src_max_len, :],
|
|
|
|
[1, 1, trg_max_len, 1]).astype("float32")
|
|
|
|
lbl_word = __pad_batch_data([inst[2] for inst in insts], trg_pad_idx, False,
|
|
|
|
False, False, False)
|
|
|
|
lbl_weight = (lbl_word != trg_pad_idx).astype("float32").reshape([-1, 1])
|
|
|
|
|
|
|
|
return [
|
|
|
|
src_word, src_pos, trg_word, trg_pos, src_slf_attn_bias,
|
|
|
|
trg_slf_attn_bias, trg_src_attn_bias, lbl_word, lbl_weight
|
|
|
|
]
|
|
|
|
|
|
|
|
|
|
|
|
import transformer_model
|
|
|
|
|
|
|
|
|
|
|
|
def transformer(use_feed):
|
|
|
|
assert not use_feed, "transfomer doesn't support feed yet"
|
|
|
|
return transformer_model.transformer(
|
|
|
|
ModelHyperParams.src_vocab_size + 1,
|
|
|
|
ModelHyperParams.trg_vocab_size + 1, ModelHyperParams.max_length + 1,
|
|
|
|
ModelHyperParams.n_layer, ModelHyperParams.n_head,
|
|
|
|
ModelHyperParams.d_key, ModelHyperParams.d_value,
|
|
|
|
ModelHyperParams.d_model, ModelHyperParams.d_inner_hid,
|
|
|
|
ModelHyperParams.dropout, ModelHyperParams.src_pad_idx,
|
|
|
|
ModelHyperParams.trg_pad_idx, ModelHyperParams.pos_pad_idx)
|
|
|
|
|
|
|
|
|
|
|
|
class TestTransformer(TestParallelExecutorBase):
|
|
|
|
@classmethod
|
|
|
|
def setUpClass(cls):
|
|
|
|
reader = paddle.batch(
|
|
|
|
wmt16.train(ModelHyperParams.src_vocab_size,
|
|
|
|
ModelHyperParams.trg_vocab_size),
|
|
|
|
batch_size=transformer_model.batch_size)
|
|
|
|
|
|
|
|
with fluid.recordio_writer.create_recordio_writer(
|
|
|
|
"./wmt16.recordio") as writer:
|
|
|
|
for batch in reader():
|
|
|
|
for tensor in prepare_batch_input(
|
|
|
|
batch, ModelHyperParams.src_pad_idx,
|
|
|
|
ModelHyperParams.trg_pad_idx, ModelHyperParams.n_head):
|
|
|
|
t = fluid.LoDTensor()
|
|
|
|
t.set(tensor, fluid.CPUPlace())
|
|
|
|
writer.append_tensor(t)
|
|
|
|
writer.complete_append_tensor()
|
|
|
|
|
|
|
|
@unittest.skip("transformer is buggy in multi gpu")
|
|
|
|
def test_main(self):
|
|
|
|
self.check_network_convergence(transformer)
|
|
|
|
|
|
|
|
|
|
|
|
class ParallelExecutorTestingDuringTraining(unittest.TestCase):
|
|
|
|
def check_network_convergence(self):
|
|
|
|
main = fluid.Program()
|
|
|
|
startup = fluid.Program()
|
|
|
|
with fluid.program_guard(main, startup):
|
|
|
|
loss = simple_fc_net(True)
|
|
|
|
test_program = main.clone(for_test=True)
|
|
|
|
|
|
|
|
opt = fluid.optimizer.SGD(learning_rate=0.001)
|
|
|
|
opt.minimize(loss)
|
|
|
|
|
|
|
|
batch_size = 32
|
|
|
|
image = numpy.random.normal(size=(batch_size,
|
|
|
|
784)).astype('float32')
|
|
|
|
label = numpy.random.randint(0, 10, (batch_size, 1), dtype="int64")
|
|
|
|
|
|
|
|
place = fluid.CUDAPlace(0)
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
exe.run(startup)
|
|
|
|
feed_dict = {'image': image, 'label': label}
|
|
|
|
|
|
|
|
train_exe = fluid.ParallelExecutor(
|
|
|
|
use_cuda=True, loss_name=loss.name, main_program=main)
|
|
|
|
|
|
|
|
test_exe = fluid.ParallelExecutor(
|
|
|
|
use_cuda=True,
|
|
|
|
main_program=test_program,
|
|
|
|
share_vars_from=train_exe)
|
|
|
|
|
|
|
|
for i in xrange(5):
|
|
|
|
test_loss, = test_exe.run([loss.name], feed=feed_dict)
|
|
|
|
test_loss = numpy.array(test_loss)
|
|
|
|
|
|
|
|
train_loss, = train_exe.run([loss.name], feed=feed_dict)
|
|
|
|
train_loss = numpy.array(train_loss)
|
|
|
|
self.assertTrue(
|
|
|
|
numpy.allclose(
|
|
|
|
train_loss, test_loss, atol=1e-8),
|
|
|
|
"Train loss: " + str(train_loss) + "\n Test loss:" +
|
|
|
|
str(test_loss))
|
|
|
|
|
|
|
|
def test_parallel(self):
|
|
|
|
self.check_network_convergence()
|
|
|
|
|
|
|
|
|
|
|
|
import paddle.dataset.conll05 as conll05
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
|
|
|
|
word_dict, verb_dict, label_dict = conll05.get_dict()
|
|
|
|
word_dict_len = len(word_dict)
|
|
|
|
label_dict_len = len(label_dict)
|
|
|
|
pred_dict_len = len(verb_dict)
|
|
|
|
mark_dict_len = 2
|
|
|
|
word_dim = 32
|
|
|
|
mark_dim = 5
|
|
|
|
hidden_dim = 512
|
|
|
|
depth = 8
|
|
|
|
mix_hidden_lr = 1e-3
|
|
|
|
embedding_name = 'emb'
|
|
|
|
|
|
|
|
|
|
|
|
def db_lstm(word, predicate, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, mark,
|
|
|
|
is_sparse, **ignored):
|
|
|
|
# 8 features
|
|
|
|
predicate_embedding = fluid.layers.embedding(
|
|
|
|
input=predicate,
|
|
|
|
is_sparse=is_sparse,
|
|
|
|
size=[pred_dict_len, word_dim],
|
|
|
|
dtype='float32',
|
|
|
|
param_attr='vemb')
|
|
|
|
|
|
|
|
mark_embedding = fluid.layers.embedding(
|
|
|
|
input=mark,
|
|
|
|
is_sparse=is_sparse,
|
|
|
|
size=[mark_dict_len, mark_dim],
|
|
|
|
dtype='float32')
|
|
|
|
|
|
|
|
word_input = [word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2]
|
|
|
|
emb_layers = [
|
|
|
|
fluid.layers.embedding(
|
|
|
|
size=[word_dict_len, word_dim],
|
|
|
|
is_sparse=is_sparse,
|
|
|
|
input=x,
|
|
|
|
param_attr=fluid.ParamAttr(
|
|
|
|
name=embedding_name, trainable=False)) for x in word_input
|
|
|
|
]
|
|
|
|
emb_layers.append(predicate_embedding)
|
|
|
|
emb_layers.append(mark_embedding)
|
|
|
|
|
|
|
|
hidden_0_layers = [
|
|
|
|
fluid.layers.fc(input=emb, size=hidden_dim, act='tanh')
|
|
|
|
for emb in emb_layers
|
|
|
|
]
|
|
|
|
|
|
|
|
hidden_0 = fluid.layers.sums(input=hidden_0_layers)
|
|
|
|
|
|
|
|
lstm_0 = fluid.layers.dynamic_lstm(
|
|
|
|
input=hidden_0,
|
|
|
|
size=hidden_dim,
|
|
|
|
candidate_activation='relu',
|
|
|
|
gate_activation='sigmoid',
|
|
|
|
cell_activation='sigmoid')
|
|
|
|
|
|
|
|
# stack L-LSTM and R-LSTM with direct edges
|
|
|
|
input_tmp = [hidden_0, lstm_0]
|
|
|
|
|
|
|
|
for i in range(1, depth):
|
|
|
|
mix_hidden = fluid.layers.sums(input=[
|
|
|
|
fluid.layers.fc(input=input_tmp[0], size=hidden_dim, act='tanh'),
|
|
|
|
fluid.layers.fc(input=input_tmp[1], size=hidden_dim, act='tanh')
|
|
|
|
])
|
|
|
|
|
|
|
|
lstm = fluid.layers.dynamic_lstm(
|
|
|
|
input=mix_hidden,
|
|
|
|
size=hidden_dim,
|
|
|
|
candidate_activation='relu',
|
|
|
|
gate_activation='sigmoid',
|
|
|
|
cell_activation='sigmoid',
|
|
|
|
is_reverse=((i % 2) == 1))
|
|
|
|
|
|
|
|
input_tmp = [mix_hidden, lstm]
|
|
|
|
|
|
|
|
feature_out = fluid.layers.sums(input=[
|
|
|
|
fluid.layers.fc(input=input_tmp[0], size=label_dict_len, act='tanh'),
|
|
|
|
fluid.layers.fc(input=input_tmp[1], size=label_dict_len, act='tanh')
|
|
|
|
])
|
|
|
|
|
|
|
|
return feature_out
|
|
|
|
|
|
|
|
|
|
|
|
class TestCRFModel(unittest.TestCase):
|
|
|
|
def check_network_convergence(self, is_sparse):
|
|
|
|
main = fluid.Program()
|
|
|
|
startup = fluid.Program()
|
|
|
|
with fluid.program_guard(main, startup):
|
|
|
|
word = fluid.layers.data(
|
|
|
|
name='word_data', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
predicate = fluid.layers.data(
|
|
|
|
name='verb_data', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
ctx_n2 = fluid.layers.data(
|
|
|
|
name='ctx_n2_data', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
ctx_n1 = fluid.layers.data(
|
|
|
|
name='ctx_n1_data', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
ctx_0 = fluid.layers.data(
|
|
|
|
name='ctx_0_data', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
ctx_p1 = fluid.layers.data(
|
|
|
|
name='ctx_p1_data', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
ctx_p2 = fluid.layers.data(
|
|
|
|
name='ctx_p2_data', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
mark = fluid.layers.data(
|
|
|
|
name='mark_data', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
|
|
|
|
feature_out = db_lstm(**locals())
|
|
|
|
target = fluid.layers.data(
|
|
|
|
name='target', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
crf_cost = fluid.layers.linear_chain_crf(
|
|
|
|
input=feature_out,
|
|
|
|
label=target,
|
|
|
|
param_attr=fluid.ParamAttr(
|
|
|
|
name='crfw', learning_rate=1e-1))
|
|
|
|
avg_cost = fluid.layers.mean(crf_cost)
|
|
|
|
|
|
|
|
sgd_optimizer = fluid.optimizer.SGD(
|
|
|
|
learning_rate=fluid.layers.exponential_decay(
|
|
|
|
learning_rate=0.01,
|
|
|
|
decay_steps=100000,
|
|
|
|
decay_rate=0.5,
|
|
|
|
staircase=True))
|
|
|
|
sgd_optimizer.minimize(avg_cost)
|
|
|
|
|
|
|
|
train_data = paddle.batch(
|
|
|
|
paddle.reader.shuffle(
|
|
|
|
paddle.dataset.conll05.test(), buf_size=8192),
|
|
|
|
batch_size=16)
|
|
|
|
|
|
|
|
place = fluid.CUDAPlace(0)
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
exe.run(startup)
|
|
|
|
|
|
|
|
pe = fluid.ParallelExecutor(use_cuda=True, loss_name=avg_cost.name)
|
|
|
|
|
|
|
|
feeder = fluid.DataFeeder(
|
|
|
|
feed_list=[
|
|
|
|
word, ctx_n2, ctx_n1, ctx_0, ctx_p1, ctx_p2, predicate,
|
|
|
|
mark, target
|
|
|
|
],
|
|
|
|
place=fluid.CPUPlace())
|
|
|
|
|
|
|
|
data = train_data()
|
|
|
|
for i in xrange(10):
|
|
|
|
cur_batch = next(data)
|
|
|
|
print map(numpy.array,
|
|
|
|
pe.run(feed=feeder.feed(cur_batch),
|
|
|
|
fetch_list=[avg_cost.name]))[0]
|
|
|
|
|
|
|
|
def test_update_sparse_parameter(self):
|
|
|
|
self.check_network_convergence(is_sparse=True)
|
|
|
|
|
|
|
|
def test_update_dense_parameter(self):
|
|
|
|
self.check_network_convergence(is_sparse=False)
|