You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/gru_op.cc

476 lines
20 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
7 years ago
#include "paddle/fluid/operators/gru_op.h"
#include <memory>
#include <string>
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/operators/math/detail/gru_cpu_kernel.h"
#include "paddle/fluid/operators/math/detail/gru_kernel.h"
DECLARE_int32(paddle_num_threads);
7 years ago
namespace paddle {
namespace operators {
using framework::Tensor;
class GRUOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "GRU");
OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "GRU");
OP_INOUT_CHECK(ctx->HasOutput("BatchGate"), "Output", "BatchGate", "GRU");
OP_INOUT_CHECK(ctx->HasOutput("BatchResetHiddenPrev"), "Output",
"BatchResetHiddenPrev", "GRU");
OP_INOUT_CHECK(ctx->HasOutput("BatchHidden"), "Output", "BatchHidden",
"GRU");
OP_INOUT_CHECK(ctx->HasOutput("Hidden"), "Output", "Hidden", "GRU");
7 years ago
auto input_dims = ctx->GetInputDim("Input");
auto weight_dims = ctx->GetInputDim("Weight");
int input_size = input_dims[1];
int frame_size = weight_dims[0];
if (ctx->IsRuntime()) {
PADDLE_ENFORCE_EQ(input_size, frame_size * 3,
platform::errors::InvalidArgument(
"The second dimension of Input(Input) must be 3 "
"times of frame_size in GRUOp, but received %d "
"(Input) vs %d (frame_size).",
input_size, frame_size));
}
7 years ago
PADDLE_ENFORCE_EQ(
weight_dims[1], frame_size * 3,
platform::errors::InvalidArgument(
"The shape of Input(Weight) matrix must be [frame_size, frame_size "
"* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
weight_dims[0], weight_dims[1], frame_size, frame_size * 3));
if (ctx->HasInput("H0")) {
7 years ago
auto h0_dims = ctx->GetInputDim("H0");
PADDLE_ENFORCE_EQ(
h0_dims[1], frame_size,
platform::errors::InvalidArgument(
"The width of Input(H0) must be equal to frame_size, but "
"received %d (width of H0) vs %d (frame_size).",
h0_dims[1], frame_size));
7 years ago
}
if (ctx->HasInput("Bias")) {
7 years ago
auto bias_dims = ctx->GetInputDim("Bias");
int bias_height = bias_dims[0];
int bias_width = bias_dims[1];
PADDLE_ENFORCE_EQ(
bias_height, 1,
platform::errors::InvalidArgument(
"The shape of Bias must be [1, frame_size * 3], but received "
"[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
bias_height, bias_width, frame_size * 3));
PADDLE_ENFORCE_EQ(
bias_width, frame_size * 3,
platform::errors::InvalidArgument(
"The shape of Bias must be [1, frame_size * 3], but received "
"[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
bias_height, bias_width, frame_size * 3));
7 years ago
}
ctx->SetOutputDim("BatchGate", input_dims);
ctx->SetOutputDim("BatchResetHiddenPrev", {input_dims[0], frame_size});
ctx->SetOutputDim("BatchHidden", {input_dims[0], frame_size});
ctx->SetOutputDim("Hidden", {input_dims[0], frame_size});
ctx->ShareLoD("Input", "Hidden");
}
};
class GRUOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
7 years ago
AddInput("Input",
"(LoDTensor) The first input is a LodTensor, which supports "
7 years ago
"variable-time length input sequence. The underlying tensor in "
"this LoDTenosr is a matrix with shape (T X 3D), where, T is the "
"total time steps in this mini-batch, D is the hidden size.");
AddInput("H0",
"(Tensor, optional) The initial hidden state is an optional "
7 years ago
"input. This is a tensor with shape (N x D), where N is the "
"batch size, D is the hidden size.")
.AsDispensable();
7 years ago
AddInput(
"Weight",
"(Tensor) The learnable hidden-hidden weight matrix with shape "
"(D x 3D), where D is the hidden size. The elements continuous in "
"memory can be divided into two parts. The first part are weights of "
"the update gate and reset gate with shape (D x 2D), and the second "
"part are weights of output candidate with shape (D x D).");
7 years ago
AddInput("Bias",
"(Tensor, optional) Bias vector with shape (1 x 3D) concating "
"bias of the update gate, reset gate and output candidate.")
.AsDispensable();
7 years ago
AddOutput("BatchGate",
"(LoDTensor) To compute with batches, sequence data will be "
"reorganized into several successive batches each containing "
"data from the same time step. The LoDTensor BatchGate contains "
"the update gate, reset gate and output candidate values "
"organized in batches. The LoD size is 2. The first LoD contains "
"the batch offsets and the second LoD contains the indexes in "
"the raw sequence data.")
7 years ago
.AsIntermediate();
AddOutput(
"BatchResetHiddenPrev",
"(LoDTensor) The reset hidden state LoDTensor organized in batches. "
"This LoDTensor is a matrix with shape (T X D) and has the same LoD "
"with `BatchGate`.")
7 years ago
.AsIntermediate();
AddOutput(
"BatchHidden",
"(LoDTensor) The hidden state LoDTensor organized in batches. "
"This LoDTensor is a matrix with shape (T X D) and has the same LoD "
"with `BatchGate`.")
7 years ago
.AsIntermediate();
AddOutput(
"Hidden",
"(LoDTensor) the hidden state LoDTensor organized in sequences. "
"This LoDTensor is a matrix with shape (T X D) and has the same LoD "
"with `BatchGate`.");
7 years ago
AddAttr<std::string>("activation",
"(string, default tanh) "
"The activation type used for output candidate {h}_t.")
.SetDefault("tanh");
AddAttr<std::string>(
"gate_activation",
"(string, default sigmoid) "
"The activation type used in update gate and reset gate.")
.SetDefault("sigmoid");
AddAttr<bool>("is_reverse",
"(bool, default: False) "
7 years ago
"whether to compute reversed GRU.")
.SetDefault(false);
AddAttr<bool>("origin_mode",
"bool"
"use origin mode in article https://arxiv.org/abs/1412.3555")
.SetDefault(false);
7 years ago
AddComment(R"DOC(
GRU Operator implements part calculations of the complete GRU as following:
$$
update\_gate: u_t = actGate(xu_t + W_u * h_{t-1} + b_u) \\
reset\_gate: r_t = actGate(xr_t + W_r * h_{t-1} + b_r) \\
output\_candidate: {h}_t = actNode(xc_t + W_c * dot(r_t, h_{t-1}) + b_c) \\
output: h_t = dot((1 - u_t), h_{t-1}) + dot(u_t, {h}_t)
$$
@note To implement the complete GRU, fully-connected operator must be used
before to feed xu, xr and xc as the Input of GRU operator.
7 years ago
)DOC");
}
};
class GRUGradOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext* ctx) const override {
OP_INOUT_CHECK(ctx->HasInput("Input"), "Input", "Input", "GRU@Grad");
OP_INOUT_CHECK(ctx->HasInput("Weight"), "Input", "Weight", "GRU@Grad");
OP_INOUT_CHECK(ctx->HasInput("BatchGate"), "Input", "BatchGate",
"GRU@Grad");
OP_INOUT_CHECK(ctx->HasInput("BatchResetHiddenPrev"), "Input",
"BatchResetHiddenPrev", "GRU@Grad");
OP_INOUT_CHECK(ctx->HasInput("BatchHidden"), "Input", "BatchHidden",
"GRU@Grad");
OP_INOUT_CHECK(ctx->HasInput("Hidden"), "Input", "Hidden", "GRU@Grad");
OP_INOUT_CHECK(ctx->HasInput(framework::GradVarName("Hidden")), "Input",
framework::GradVarName("Hidden"), "GRU@Grad");
7 years ago
auto input_dims = ctx->GetInputDim("Input");
auto weight_dims = ctx->GetInputDim("Weight");
int input_size = input_dims[1];
int frame_size = weight_dims[0];
int weight_height = weight_dims[0];
int weight_width = weight_dims[1];
PADDLE_ENFORCE_EQ(
input_size, frame_size * 3,
platform::errors::InvalidArgument(
"The second dimension of Input(Input) must be 3 times of "
"frame_size in GRUOp, but received %d (Input) vs %d (frame_size).",
input_size, frame_size));
7 years ago
PADDLE_ENFORCE_EQ(
weight_height, frame_size,
platform::errors::InvalidArgument(
"The shape of Input(Weight) matrix must be [frame_size, frame_size "
"* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
weight_height, weight_width, frame_size, frame_size * 3));
7 years ago
PADDLE_ENFORCE_EQ(
weight_width, frame_size * 3,
platform::errors::InvalidArgument(
"The shape of Input(Weight) matrix must be [frame_size, frame_size "
"* 3], but received [%d, %d] (Weight) vs [%d, %d] (frame_size).",
weight_height, weight_width, frame_size, frame_size * 3));
if (ctx->HasInput("H0")) {
7 years ago
auto h0_dims = ctx->GetInputDim("H0");
PADDLE_ENFORCE_EQ(
h0_dims[1], frame_size,
platform::errors::InvalidArgument(
"The width of Input(H0) must be equal to frame_size, but "
"received %d (width of H0) vs %d (frame_size).",
h0_dims[1], frame_size));
7 years ago
auto h0_grad_name = framework::GradVarName("H0");
if (ctx->HasOutput(h0_grad_name))
ctx->SetOutputDim(h0_grad_name, h0_dims);
}
if (ctx->HasInput("Bias")) {
7 years ago
auto bias_dims = ctx->GetInputDim("Bias");
int bias_height = bias_dims[0];
int bias_width = bias_dims[1];
PADDLE_ENFORCE_EQ(
bias_height, 1,
platform::errors::InvalidArgument(
"The shape of Bias must be [1, frame_size * 3], but received "
"[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
bias_height, bias_width, frame_size * 3));
PADDLE_ENFORCE_EQ(
bias_width, frame_size * 3,
platform::errors::InvalidArgument(
"The shape of Bias must be [1, frame_size * 3], but received "
"[%d, %d] (Bias) vs [1, %d] (frame_size * 3).",
bias_height, bias_width, frame_size * 3));
7 years ago
auto bias_grad_name = framework::GradVarName("Bias");
if (ctx->HasOutput(bias_grad_name))
ctx->SetOutputDim(bias_grad_name, bias_dims);
}
auto input_grad_name = framework::GradVarName("Input");
if (ctx->HasOutput(input_grad_name))
ctx->SetOutputDim(input_grad_name, input_dims);
auto weight_grad_name = framework::GradVarName("Weight");
if (ctx->HasOutput(weight_grad_name))
ctx->SetOutputDim(weight_grad_name, weight_dims);
}
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext& ctx) const override {
return framework::OpKernelType(OperatorWithKernel::IndicateVarDataType(
ctx, framework::GradVarName("Hidden")),
ctx.device_context());
}
7 years ago
};
template <typename T>
class GRUCPUKernel : public framework::OpKernel<T> {
public:
void BatchCompute(const framework::ExecutionContext& context) const {
using DeviceContext = paddle::platform::CPUDeviceContext;
bool origin_mode = context.Attr<bool>("origin_mode");
auto* input = context.Input<LoDTensor>("Input");
auto* h0 = context.Input<Tensor>("H0");
auto* weight = context.Input<Tensor>("Weight");
const T* weight_data = weight->data<T>();
auto* bias = context.Input<Tensor>("Bias");
auto* batch_gate = context.Output<LoDTensor>("BatchGate");
batch_gate->mutable_data<T>(context.GetPlace());
auto* batch_reset_hidden_prev =
context.Output<LoDTensor>("BatchResetHiddenPrev");
batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
auto* batch_hidden = context.Output<LoDTensor>("BatchHidden");
batch_hidden->mutable_data<T>(context.GetPlace());
auto* hidden = context.Output<LoDTensor>("Hidden");
hidden->mutable_data<T>(context.GetPlace());
auto hidden_dims = hidden->dims();
bool is_reverse = context.Attr<bool>("is_reverse");
math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
auto& dev_ctx = context.template device_context<DeviceContext>();
to_batch(dev_ctx, *input, batch_gate, true, is_reverse);
if (bias) {
math::RowwiseAdd<DeviceContext, T> add_bias;
add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
}
int frame_size = hidden_dims[1];
math::GRUMetaValue<T> gru_value;
gru_value.gate_weight = const_cast<T*>(weight_data);
gru_value.state_weight =
const_cast<T*>(weight_data + 2 * frame_size * frame_size);
Tensor ordered_h0;
framework::Vector<size_t> order(batch_gate->lod()[2]);
if (h0) {
// Since the batch computing for GRU reorders the input sequences
// according to their length. The initialized cell state also needs
// to reorder.
ReorderInitState<DeviceContext, T>(
context.template device_context<DeviceContext>(), *h0, order,
&ordered_h0, true);
gru_value.prev_out_value = ordered_h0.data<T>();
} else {
gru_value.prev_out_value = nullptr;
}
auto batch_starts = batch_gate->lod()[0];
size_t seq_len = batch_starts.size() - 1;
auto active_node = math::detail::GetActivationType(
context.Attr<std::string>("activation"));
auto active_gate = math::detail::GetActivationType(
context.Attr<std::string>("gate_activation"));
#ifdef PADDLE_WITH_MKLML
7 years ago
// use MKL packed to speedup GEMM
if (FLAGS_paddle_num_threads >= 4) {
auto blas = math::GetBlas<DeviceContext, T>(dev_ctx);
T* packed_gate = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
frame_size * 2 /*width of weight*/,
frame_size /*height of height*/);
PADDLE_ENFORCE_NOT_NULL(
packed_gate, platform::errors::NotFound(
"The caculation result of packed_gate by "
"GEMM_ALLOC should not be null when using MKL."));
blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size * 2,
frame_size, T(1.0), gru_value.gate_weight, frame_size * 2,
packed_gate);
T* packed_state = blas.GEMM_ALLOC(CblasBMatrix, 1 /*height of C*/,
frame_size /*width of weight*/,
frame_size /*height of height*/);
PADDLE_ENFORCE_NOT_NULL(
packed_state, platform::errors::NotFound(
"The caculation result of packed_state by "
"GEMM_ALLOC should not be null when using MKL."));
blas.GEMM_PACK(CblasBMatrix, CblasNoTrans, 1 /*cur bs?*/, frame_size,
frame_size, T(1.0), gru_value.state_weight, frame_size,
packed_state);
for (size_t n = 0; n < seq_len; n++) {
int bstart = static_cast<int>(batch_starts[n]);
int bend = static_cast<int>(batch_starts[n + 1]);
int cur_batch_size = bend - bstart;
Tensor gate_t = batch_gate->Slice(bstart, bend);
Tensor reset_hidden_prev_t =
batch_reset_hidden_prev->Slice(bstart, bend);
Tensor hidden_t = batch_hidden->Slice(bstart, bend);
gru_value.output_value = hidden_t.data<T>();
gru_value.gate_value = gate_t.data<T>();
gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
if (gru_value.prev_out_value) {
blas.GEMM_COMPUTE(
CblasNoTrans, CblasPacked, cur_batch_size, frame_size * 2,
frame_size, gru_value.prev_out_value, frame_size, packed_gate,
frame_size * 2, T(1), gru_value.gate_value, frame_size * 3);
}
math::detail::forward_reset_output(
math::detail::forward::gru_resetOutput<T>(), gru_value, frame_size,
cur_batch_size, active_gate);
if (gru_value.prev_out_value) {
blas.GEMM_COMPUTE(
CblasNoTrans, CblasPacked, cur_batch_size, frame_size, frame_size,
gru_value.reset_output_value, frame_size, packed_state,
frame_size, T(1), gru_value.gate_value + frame_size * 2,
frame_size * 3);
}
math::detail::forward_final_output(
math::detail::forward::gru_finalOutput<T>(), gru_value, frame_size,
cur_batch_size, active_node, origin_mode);
gru_value.prev_out_value = gru_value.output_value;
}
blas.GEMM_FREE(packed_gate);
blas.GEMM_FREE(packed_state);
} else {
#endif
for (size_t n = 0; n < seq_len; n++) {
int bstart = static_cast<int>(batch_starts[n]);
int bend = static_cast<int>(batch_starts[n + 1]);
int cur_batch_size = bend - bstart;
Tensor gate_t = batch_gate->Slice(bstart, bend);
Tensor reset_hidden_prev_t =
batch_reset_hidden_prev->Slice(bstart, bend);
Tensor hidden_t = batch_hidden->Slice(bstart, bend);
gru_value.output_value = hidden_t.data<T>();
gru_value.gate_value = gate_t.data<T>();
gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
math::GRUUnitFunctor<DeviceContext, T>::compute(
dev_ctx, gru_value, frame_size, cur_batch_size, active_node,
active_gate, origin_mode);
gru_value.prev_out_value = gru_value.output_value;
}
#ifdef PADDLE_WITH_MKLML
}
#endif
math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
batch_hidden->set_lod(batch_gate->lod());
to_seq(dev_ctx, *batch_hidden, hidden);
}
void Compute(const framework::ExecutionContext& context) const override {
BatchCompute(context);
}
};
template <typename T>
class GRUGradOpMaker : public framework::SingleGradOpMaker<T> {
public:
using framework::SingleGradOpMaker<T>::SingleGradOpMaker;
protected:
void Apply(GradOpPtr<T> grad_op) const override {
grad_op->SetType("gru_grad");
grad_op->SetInput("Input", this->Input("Input"));
grad_op->SetInput("H0", this->Input("H0"));
grad_op->SetInput("Bias", this->Input("Bias"));
grad_op->SetInput("Weight", this->Input("Weight"));
grad_op->SetInput("BatchGate", this->Output("BatchGate"));
grad_op->SetInput("BatchResetHiddenPrev",
this->Output("BatchResetHiddenPrev"));
grad_op->SetInput("BatchHidden", this->Output("BatchHidden"));
grad_op->SetInput("Hidden", this->Output("Hidden"));
grad_op->SetInput(framework::GradVarName("Hidden"),
this->OutputGrad("Hidden"));
grad_op->SetOutput(framework::GradVarName("H0"), this->InputGrad("H0"));
grad_op->SetOutput(framework::GradVarName("Input"),
this->InputGrad("Input"));
grad_op->SetOutput(framework::GradVarName("Weight"),
this->InputGrad("Weight"));
grad_op->SetOutput(framework::GradVarName("Bias"), this->InputGrad("Bias"));
grad_op->SetAttrMap(this->Attrs());
}
};
DECLARE_NO_NEED_BUFFER_VARS_INFERER(GRUGradOpNoNeedBufferVarInferer, "Input",
"Bias");
7 years ago
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(gru, ops::GRUOp, ops::GRUOpMaker,
ops::GRUGradOpMaker<paddle::framework::OpDesc>,
ops::GRUGradOpMaker<paddle::imperative::OpBase>);
REGISTER_OPERATOR(gru_grad, ops::GRUGradOp,
ops::GRUGradOpNoNeedBufferVarInferer);
REGISTER_OP_CPU_KERNEL(gru, ops::GRUCPUKernel<float>,
ops::GRUCPUKernel<double>);
REGISTER_OP_CPU_KERNEL(
gru_grad, ops::GRUGradKernel<paddle::platform::CPUDeviceContext, float>,
ops::GRUGradKernel<paddle::platform::CPUDeviceContext, double>);