You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/uniform_random_op.cc

266 lines
11 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/uniform_random_op.h"
#include <string>
#include "paddle/fluid/framework/generator.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/operator.h"
namespace paddle {
namespace operators {
8 years ago
// It seems that Eigen::Tensor::random in GPU will SEGFAULT.
// Use std::random and thrust::random(thrust is a std library in CUDA) to
// implement uniform random.
template <typename T>
class CPUUniformRandomKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext &ctx) const override {
framework::Tensor *tensor = nullptr;
auto out_var = ctx.OutputVar("Out");
std::vector<int64_t> new_shape;
auto list_new_shape_tensor =
ctx.MultiInput<framework::Tensor>("ShapeTensorList");
if (list_new_shape_tensor.size() > 0 || ctx.HasInput("ShapeTensor")) {
if (ctx.HasInput("ShapeTensor")) {
auto *shape_tensor = ctx.Input<framework::Tensor>("ShapeTensor");
new_shape = GetNewDataFromShapeTensor(shape_tensor);
} else if (list_new_shape_tensor.size() > 0) {
new_shape = GetNewDataFromShapeTensorList(list_new_shape_tensor);
}
}
if (out_var->IsType<framework::SelectedRows>()) {
auto *selected_rows = out_var->GetMutable<framework::SelectedRows>();
tensor = selected_rows->mutable_value();
auto shape = ctx.Attr<std::vector<int64_t>>("shape");
if (!new_shape.empty()) shape = new_shape;
tensor->Resize(framework::make_ddim(shape));
selected_rows->mutable_rows()->reserve(shape[0]);
} else if (out_var->IsType<framework::LoDTensor>()) {
tensor = out_var->GetMutable<framework::LoDTensor>();
if (!new_shape.empty()) tensor->Resize(framework::make_ddim(new_shape));
} else {
PADDLE_THROW(platform::errors::InvalidArgument(
"Expected type of Output(out) in uniform_random_op must be Tensor, "
"SelectedRows. But got "
"unsupport type: %s.",
framework::ToTypeName(out_var->Type())));
}
T *data = tensor->mutable_data<T>(ctx.GetPlace());
int64_t size = tensor->numel();
std::uniform_real_distribution<T> dist(
static_cast<T>(ctx.Attr<float>("min")),
static_cast<T>(ctx.Attr<float>("max")));
unsigned int seed = static_cast<unsigned int>(ctx.Attr<int>("seed"));
auto engine = framework::GetCPURandomEngine(seed);
for (int64_t i = 0; i < size; ++i) {
data[i] = dist(*engine);
}
unsigned int diag_num =
static_cast<unsigned int>(ctx.Attr<int>("diag_num"));
unsigned int diag_step =
static_cast<unsigned int>(ctx.Attr<int>("diag_step"));
auto diag_val = static_cast<T>(ctx.Attr<float>("diag_val"));
if (diag_num > 0) {
PADDLE_ENFORCE_GT(
size, (diag_num - 1) * (diag_step + 1),
platform::errors::InvalidArgument(
"ShapeInvalid: the diagonal's elements is equal (num-1) "
"* (step-1) with num %d, step %d,"
"It should be smaller than %d, but received %d",
diag_num, diag_step, (diag_num - 1) * (diag_step + 1), size));
for (int64_t i = 0; i < diag_num; ++i) {
int64_t pos = i * diag_step + i;
data[pos] = diag_val;
}
}
}
};
8 years ago
class UniformRandomOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
OP_INOUT_CHECK(ctx->HasOutput("Out"), "Output", "Out", "UniformRandomOp");
PADDLE_ENFORCE_LT(
ctx->Attrs().Get<float>("min"), ctx->Attrs().Get<float>("max"),
platform::errors::InvalidArgument(
"The uniform_random's min must less then max. But received min = "
"%f great than or equal max = %f.",
ctx->Attrs().Get<float>("min"), ctx->Attrs().Get<float>("max")));
PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>("diag_num"), 0,
platform::errors::InvalidArgument(
"The uniform_random's diag_num must greater than or "
"equal 0. But recevied diag_num (%d) < 0.",
ctx->Attrs().Get<int>("diag_num")));
PADDLE_ENFORCE_GE(ctx->Attrs().Get<int>("diag_step"), 0,
platform::errors::InvalidArgument(
"The uniform_random's diag_step must greater than or "
"equal 0. But recevied diag_step (%d) < 0.",
ctx->Attrs().Get<int>("diag_step")));
if (ctx->HasInputs("ShapeTensorList")) {
// top prority shape
auto inputs_name = ctx->Inputs("ShapeTensorList");
PADDLE_ENFORCE_GT(inputs_name.size(), 0,
platform::errors::InvalidArgument(
"Input(ShapeTensorList)'size of "
"Op(uniform_random) can't be zero."
"Please check the Attr(shape)'s size of"
"Op(fluid.layers.uniform_random).)"));
auto out_dims = std::vector<int>(inputs_name.size(), -1);
ctx->SetOutputDim("Out", framework::make_ddim(out_dims));
return;
}
auto &shape = ctx->Attrs().Get<std::vector<int64_t>>("shape");
if (ctx->HasInput("ShapeTensor") && shape.empty()) {
auto shape_dims = ctx->GetInputDim("ShapeTensor");
PADDLE_ENFORCE_EQ(
shape_dims.size(), 1,
platform::errors::InvalidArgument(
"ShapeError: Input(ShapeTensor)' dimension size of "
"Op(uniform_random) must be 1."
"But received ShapeTensor's dimensions = %d, shape = [%s]",
shape_dims.size(), shape_dims));
int num_ele = 1;
for (int i = 0; i < shape_dims.size(); ++i) {
num_ele *= shape_dims[i];
}
auto vec_dims = std::vector<int64_t>(num_ele, -1);
auto out_dims = framework::make_ddim(vec_dims);
ctx->SetOutputDim("Out", out_dims);
return;
}
PADDLE_ENFORCE_EQ(shape.empty(), false,
platform::errors::InvalidArgument(
"if there is no Input(ShapeTensorList) and no "
"Input(ShapeTensor),the "
"attr(shape) information must "
"be set by Attr(shape)."));
std::vector<int64_t> tensor_shape;
tensor_shape.reserve(shape.size());
for (auto dim : shape) {
tensor_shape.push_back(static_cast<int64_t>(dim));
}
ctx->SetOutputDim("Out", framework::make_ddim(tensor_shape));
}
7 years ago
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
[WIP] Move DataType enum inside VarType (#8447) * Move Pod Types from DataType enum to Type enum * Fixed data_type.h * Fix type in TensorDesc * Add comment to framework.proto * Fixed type in data_type.h * Updated format of type in data_type.h * Fix var_desc.h * Fix op_kernel_type.h * Fixed data_type_transform_test.cc * Fix operator.h * Fixed data_type_transform.cc * Fixed op_kernel_type_test.cc * Fix operator.cc * Fixed data_layout_transform_test.cc * Fix var_desc.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * fixed protobuf.cc * Fix data_layout_transform_test.cc and op_kernel_type_test.cc * Fixed rnn_memory_helper_op.cc * Fix progrma_desc_test.cc * Fixed fill_constant_batch_size_like_op.cc * Fix operator_test.cc * Fixed fill_constant_op.cc * Fixed gaussian_random_op.cc * Fixed uniform_random_op.cc * Fixed edit_distance_op.cc * Fixed fill_constant_batch_size_like_op.cc * Fixed rnn_memory_helper_op.cc * Fixed chunk_eval_op.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * Fixed cast_op.h * Fixed cast_op.h * Fix fill constant op * Fixed clang for assign_value_op.cc * Fix one_hot_op.h * Fix one_hot_op.cc * Fix fill_op.cc * Fixed sum_op.cc * Fixed sum_op clang * Fix uniform_random_op.cc * Fix gaussian_random_op.cc * Fix backward.cc * Fix protobuf.cc * Fixed prune_test.cc * Fixed op_registry_test.cc * Fix data_device_transform_test.cu * Fix travis error * Fixed one_hot_op.cu * Fixed op_registry_test.cc * Fixed nccl_op.cc * Fixing python tests * Revert "Fixing python tests" This reverts commit fccaa4c5818ed9f379ea1ce4315066cc78076c64. * Fixing Pybind to remove data type * Fixing tensor.py * Updated the new files: * Resolve error in merge conflict of fill_constant_batch_size_like_op.cc
7 years ago
static_cast<framework::proto::VarType::Type>(ctx.Attr<int>("dtype")),
ctx.GetPlace());
7 years ago
}
framework::OpKernelType GetKernelTypeForVar(
const std::string &var_name, const Tensor &tensor,
const framework::OpKernelType &expected_kernel_type) const override {
if (var_name == "ShapeTensorList" || var_name == "ShapeTensor") {
return expected_kernel_type;
}
return framework::OpKernelType(expected_kernel_type.data_type_,
tensor.place(), tensor.layout());
}
};
8 years ago
class UniformRandomOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("ShapeTensor",
"(Tensor<int64_t> or Tensor<int32_t>, optional) . If provided, "
"uniform_random "
"according to "
"this given shape. It means that it has a higher priority than "
"the shape attribute, while the shape attribute still should be "
"set correctly to guarantee shape inference in compile time.")
.AsDispensable();
AddInput("ShapeTensorList",
"(vector<Tensor<int64_t>> or vector<Tensor<int32_t>>, optional). "
"If provided, uniform_random use this. The shape of the tensor "
"must be [1], it has the highest priority comparing with "
"Input(ShapeTensor) and attr(shape).")
.AsDuplicable()
.AsDispensable();
AddOutput("Out", "The output tensor of uniform random op");
AddComment(R"DOC(
This operator initializes a tensor with random values sampled from a
uniform distribution. The random result is in set [min, max).
)DOC");
AddAttr<std::vector<int64_t>>("shape", "The shape of the output tensor")
.SetDefault({});
AddAttr<float>("min", "Minimum value of uniform random. [default -1.0].")
.SetDefault(-1.0f);
AddAttr<float>("max", "Maximun value of uniform random. [default 1.0].")
.SetDefault(1.0f);
AddAttr<int>("seed",
"Random seed used for generating samples. "
"0 means use a seed generated by the system."
"Note that if seed is not 0, this operator will always "
"generate the same random numbers every time. [default 0].")
.SetDefault(0);
AddAttr<int>("diag_num",
"The number of diag elements. Note that if "
"diag_num is 0, it means without diag init.[default 0].")
.SetDefault(0);
AddAttr<int>("diag_step", "The step between two diag element.[default 0].")
.SetDefault(0);
AddAttr<float>("diag_val", "The value of diag element. [default 1.0].")
.SetDefault(1.0f);
AddAttr<int>("dtype", "Output tensor data type. [default 5(FP32)].")
[WIP] Move DataType enum inside VarType (#8447) * Move Pod Types from DataType enum to Type enum * Fixed data_type.h * Fix type in TensorDesc * Add comment to framework.proto * Fixed type in data_type.h * Updated format of type in data_type.h * Fix var_desc.h * Fix op_kernel_type.h * Fixed data_type_transform_test.cc * Fix operator.h * Fixed data_type_transform.cc * Fixed op_kernel_type_test.cc * Fix operator.cc * Fixed data_layout_transform_test.cc * Fix var_desc.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * fixed protobuf.cc * Fix data_layout_transform_test.cc and op_kernel_type_test.cc * Fixed rnn_memory_helper_op.cc * Fix progrma_desc_test.cc * Fixed fill_constant_batch_size_like_op.cc * Fix operator_test.cc * Fixed fill_constant_op.cc * Fixed gaussian_random_op.cc * Fixed uniform_random_op.cc * Fixed edit_distance_op.cc * Fixed fill_constant_batch_size_like_op.cc * Fixed rnn_memory_helper_op.cc * Fixed chunk_eval_op.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * Fixed cast_op.h * Fixed cast_op.h * Fix fill constant op * Fixed clang for assign_value_op.cc * Fix one_hot_op.h * Fix one_hot_op.cc * Fix fill_op.cc * Fixed sum_op.cc * Fixed sum_op clang * Fix uniform_random_op.cc * Fix gaussian_random_op.cc * Fix backward.cc * Fix protobuf.cc * Fixed prune_test.cc * Fixed op_registry_test.cc * Fix data_device_transform_test.cu * Fix travis error * Fixed one_hot_op.cu * Fixed op_registry_test.cc * Fixed nccl_op.cc * Fixing python tests * Revert "Fixing python tests" This reverts commit fccaa4c5818ed9f379ea1ce4315066cc78076c64. * Fixing Pybind to remove data type * Fixing tensor.py * Updated the new files: * Resolve error in merge conflict of fill_constant_batch_size_like_op.cc
7 years ago
.SetDefault(framework::proto::VarType::FP32);
}
};
class UniformRandomOpVarTypeInference : public framework::VarTypeInference {
public:
void operator()(framework::InferVarTypeContext *ctx) const override {
auto var_data_type = static_cast<framework::proto::VarType::Type>(
BOOST_GET_CONST(int, ctx->GetAttr("dtype")));
if (ctx->GetOutputType("Out") != framework::proto::VarType::SELECTED_ROWS) {
ctx->SetOutputType("Out", framework::proto::VarType::LOD_TENSOR);
}
ctx->SetOutputDataType("Out", var_data_type);
}
};
} // namespace operators
} // namespace paddle
GradMaker for dygraph (#19706) * refactor dygraph,test=develop * fix failed unittest,test=develop * polish code,test=develop * check windows ci error,test=develop try to fix windows ci error by np.allclose,test=develop * polish vlog and profiler, test=develop * try to fix preceding ops order,test=develop * test transformer in windows ci, test=develop * use python c-api to speed up tracer.trace,test=develop * test=develop, fix docker with paddle nccl problem * test=develop, add ut for debug string and gradient_accumulator * test=develop, add tests for layer/gradient_accumulator/prepared_op * test=develop, fix complie error for test_prepared_op * test=develop, add more ut for dygraph * test=develop, create API.spec for dygraph api change * optimize grad maker; test=develop * optimize grad maker * test * grad make optim; test=develop * fix unittest bugs; test=develop * add dygraph grad op maker and split_op * grad op maker refactor; test=develop * add dygraph grad maker; test=develop * fix op deformable_conv_v1_op bug; test=develop * fix deformable_conv prroi pool bugs; * fix new op grad op maker bug; test=develop * fix split by ref bug; test=develop * fix dygraph auto prune bug; test=develop * fix test_trace bug; test=develop * fix fused emb seq pool bug; test=develop * remove useless code in op_desc file; test=develop * remove useless code, StrVarBaseNode; test=develop * fix review issues; test=develop * fix rank_loss grad maker; test=develop * remove flag in VarBase; test=develop * fix distributed_notify_op compile bug ; test=develop * fix reshape op double grad; test=develop * fix expand as op; test=develop * add impertive type_defs.h for demo_train; test=develop * fix inference lib cmake; test=develop * fix inference lib; test=develop * fix infernce_lib; test=develop * fix inference cmake; test=develop * fix inference lib; test=develop * fix inference lib; test=develop * remove condition dygraph grad maker, modify local name; test=develop * fix split grad maker bug; test=develop * fix pyramid_op bug; test=develop * change travis time out limit; test=develop * restore travis; test=develop * change timeout limit; test=develop
5 years ago
REGISTER_OPERATOR(
uniform_random, paddle::operators::UniformRandomOp,
paddle::operators::UniformRandomOpMaker,
paddle::framework::EmptyGradOpMaker<paddle::framework::OpDesc>,
paddle::framework::EmptyGradOpMaker<paddle::imperative::OpBase>,
paddle::operators::UniformRandomOpVarTypeInference);
REGISTER_OP_CPU_KERNEL(uniform_random,
paddle::operators::CPUUniformRandomKernel<float>,
paddle::operators::CPUUniformRandomKernel<double>);
REGISTER_OP_CPU_KERNEL(uniform_random_batch_size_like,
paddle::operators::CPUUniformRandomKernel<float>,
paddle::operators::CPUUniformRandomKernel<double>);