You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/auc_op.h

136 lines
4.9 KiB

8 years ago
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using Tensor = framework::Tensor;
8 years ago
template <typename T, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenVector = framework::EigenVector<T, MajorType, IndexType>;
8 years ago
template <typename Place, typename T>
class AucKernel : public framework::OpKernel<T> {
8 years ago
public:
void Compute(const framework::ExecutionContext& ctx) const override {
auto* inference = ctx.Input<Tensor>("Inference");
auto* label = ctx.Input<Tensor>("Label");
auto* auc = ctx.Output<Tensor>("AUC");
float* auc_data = auc->mutable_data<float>(ctx.GetPlace());
std::string curve = ctx.Attr<std::string>("curve");
int num_thresholds = ctx.Attr<int>("num_thresholds");
std::vector<float> thresholds_list;
thresholds_list.reserve(num_thresholds);
for (int i = 1; i < num_thresholds - 1; i++) {
thresholds_list[i] = (float)i / (num_thresholds - 1);
}
const float kEpsilon = 1e-7;
thresholds_list[0] = 0.0f - kEpsilon;
thresholds_list[num_thresholds - 1] = 1.0f + kEpsilon;
8 years ago
size_t num_samples = inference->numel();
const T* inference_data = inference->data<T>();
Tensor label_casted;
label_casted.Resize(label->dims());
bool* label_casted_data = label_casted.mutable_data<bool>(ctx.GetPlace());
8 years ago
8 years ago
const int* label_data = label->data<int>();
// cast label_data to bool
for (size_t i = 0; i < num_samples; i++) {
label_casted_data[i] = static_cast<bool>(label_data[i]);
}
8 years ago
8 years ago
// Create local tensor for storing the curve: TP, FN, TN, FP
// TODO(typhoonzero): use eigen op to caculate these values.
8 years ago
Tensor true_positive, false_positive, true_negative, false_negative;
8 years ago
true_positive.Resize({num_thresholds});
false_negative.Resize({num_thresholds});
true_negative.Resize({num_thresholds});
false_positive.Resize({num_thresholds});
8 years ago
int* tp_data = true_positive.mutable_data<int>(ctx.GetPlace());
int* fn_data = false_negative.mutable_data<int>(ctx.GetPlace());
int* tn_data = true_negative.mutable_data<int>(ctx.GetPlace());
int* fp_data = false_positive.mutable_data<int>(ctx.GetPlace());
8 years ago
8 years ago
for (int idx_thresh = 0; idx_thresh < num_thresholds; idx_thresh++) {
8 years ago
// caculate TP, FN, TN, FP for current thresh
8 years ago
int tp = 0, fn = 0, tn = 0, fp = 0;
8 years ago
for (size_t i = 0; i < num_samples; i++) {
8 years ago
if (label_casted_data[i]) {
8 years ago
if (inference_data[i] >= (thresholds_list[idx_thresh])) {
8 years ago
tp++;
} else {
8 years ago
fn++;
8 years ago
}
} else {
8 years ago
if (inference_data[i] >= (thresholds_list[idx_thresh])) {
8 years ago
fp++;
8 years ago
} else {
8 years ago
tn++;
8 years ago
}
}
}
// store rates
tp_data[idx_thresh] = tp;
fn_data[idx_thresh] = fn;
tn_data[idx_thresh] = tn;
fp_data[idx_thresh] = fp;
}
// epsilon to avoid divide by zero.
float epsilon = 1e-6;
// Riemann sum to caculate auc.
Tensor tp_rate, fp_rate, rec_rate;
tp_rate.Resize({num_thresholds});
fp_rate.Resize({num_thresholds});
rec_rate.Resize({num_thresholds});
8 years ago
float* tp_rate_data = tp_rate.mutable_data<float>(ctx.GetPlace());
float* fp_rate_data = fp_rate.mutable_data<float>(ctx.GetPlace());
float* rec_rate_data = rec_rate.mutable_data<float>(ctx.GetPlace());
8 years ago
for (int i = 0; i < num_thresholds; i++) {
8 years ago
tp_rate_data[i] =
((float)tp_data[i] + epsilon) / (tp_data[i] + fn_data[i] + epsilon);
fp_rate_data[i] = (float)fp_data[i] / (fp_data[i] + tn_data[i] + epsilon);
rec_rate_data[i] =
((float)tp_data[i] + epsilon) / (tp_data[i] + fp_data[i] + epsilon);
8 years ago
}
8 years ago
*auc_data = 0.0f;
8 years ago
if (curve == "ROC") {
8 years ago
for (int i = 0; i < num_thresholds - 1; i++) {
auto dx = fp_rate_data[i] - fp_rate_data[i + 1];
auto y = (tp_rate_data[i] + tp_rate_data[i + 1]) / 2.0f;
8 years ago
*auc_data = *auc_data + dx * y;
}
8 years ago
} else if (curve == "PR") {
8 years ago
for (int i = 1; i < num_thresholds; i++) {
auto dx = tp_rate_data[i] - tp_rate_data[i - 1];
auto y = (rec_rate_data[i] + rec_rate_data[i - 1]) / 2.0f;
*auc_data = *auc_data + dx * y;
}
}
}
};
} // namespace operators
} // namespace paddle