You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/math/concat.cu

279 lines
9.9 KiB

7 years ago
/* Copyright (c) 2018 paddlepaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/mixed_vector.h"
7 years ago
#include "paddle/fluid/operators/math/concat.h"
#include "paddle/fluid/platform/cuda_helper.h"
namespace paddle {
namespace operators {
namespace math {
template <typename T>
__device__ T upper_bound(const T* first, T count, T val) {
const T* orig = first;
const T* it = nullptr;
T step = 0;
while (count > 0) {
it = first;
step = count / 2;
it += step;
if (!(val < *it)) {
first = ++it;
count -= step + 1;
} else {
count = step;
}
}
return first - orig;
}
template <typename T>
__global__ void KernelConcat(T** inputs, const int* input_cols, int col_size,
7 years ago
const int output_rows, const int output_cols,
T* output) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
int segment = upper_bound<int>(input_cols, col_size, tid_x) - 1;
7 years ago
int curr_offset = input_cols[segment];
7 years ago
int curr_segment = segment;
for (; tid_x < output_cols; tid_x += blockDim.x * gridDim.x) {
T curr_col_offset;
while ((curr_col_offset = input_cols[curr_segment + 1]) <= tid_x) {
7 years ago
curr_offset = curr_col_offset;
++curr_segment;
}
int local_col = tid_x - curr_offset;
int segment_width = curr_col_offset - curr_offset;
T* input_ptr = inputs[curr_segment];
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
7 years ago
for (; tid_y < output_rows; tid_y += blockDim.y * gridDim.y)
output[tid_y * output_cols + tid_x] =
input_ptr[tid_y * segment_width + local_col];
}
}
template <typename T>
__global__ void KernelConcat(T** inputs, const int input_col,
const int output_rows, const int output_cols,
T* output) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid_x < output_cols; tid_x += blockDim.x * gridDim.x) {
7 years ago
int split = tid_x * 1.0 / input_col;
int in_offset = tid_x - split * input_col;
T* input_ptr = inputs[split];
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
for (; tid_y < output_rows; tid_y += blockDim.y * gridDim.y) {
output[tid_y * output_cols + tid_x] =
input_ptr[tid_y * input_col + in_offset];
}
}
}
template <typename T>
__global__ void KernelConcatGrad(const T* input, const int input_row,
const int input_col, const int* output_cols,
int col_size, T** outputs) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
int segment = upper_bound<int>(output_cols, col_size, tid_x) - 1;
int curr_offset = output_cols[segment];
int curr_segment = segment;
for (; tid_x < input_col; tid_x += blockDim.x * gridDim.x) {
T curr_col_offset;
while ((curr_col_offset = output_cols[curr_segment + 1]) <= tid_x) {
curr_offset = curr_col_offset;
++curr_segment;
}
int local_col = tid_x - curr_offset;
int segment_width = curr_col_offset - curr_offset;
T* output_ptr = outputs[curr_segment];
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
for (; tid_y < input_row; tid_y += blockDim.y * gridDim.y)
output_ptr[tid_y * segment_width + local_col] =
input[tid_y * input_col + tid_x];
}
}
template <typename T>
__global__ void KernelConcatGrad(const T* input, const int input_row,
7 years ago
const int input_col, const int output_col,
T** outputs) {
int tid_x = blockIdx.x * blockDim.x + threadIdx.x;
for (; tid_x < input_col; tid_x += blockDim.x * gridDim.x) {
7 years ago
int split = tid_x / output_col;
int in_offset = tid_x - split * output_col;
T* output_ptr = outputs[split];
int tid_y = blockIdx.y * blockDim.y + threadIdx.y;
for (; tid_y < input_row; tid_y += blockDim.y * gridDim.y)
7 years ago
output_ptr[tid_y * output_col + in_offset] =
input[tid_y * input_col + tid_x];
}
}
7 years ago
/*
* All tensors' dimension should be the same and the values of
* each dimension are the same, except the axis dimension.
7 years ago
*/
template <typename T>
class ConcatFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
const std::vector<framework::Tensor>& input, const int axis,
7 years ago
framework::Tensor* output) {
// TODO(zcd): Add input data validity checking
7 years ago
int num = input.size();
int rows = 1;
auto dim_0 = input[0].dims();
for (int i = 0; i < axis; ++i) {
rows *= dim_0[i];
}
int cols = input[0].numel() / rows;
int out_rows = rows, out_cols = 0;
framework::Vector<int16_t> inputs_data(num * sizeof(T*) / 2);
framework::Vector<int> inputs_cols(num + 1);
inputs_cols[0] = 0;
T** inputs_ptr = reinterpret_cast<T**>(inputs_data.data());
bool sameShape = true;
7 years ago
for (int i = 0; i < num; ++i) {
int t_cols = input[i].numel() / rows;
if (sameShape) {
if (t_cols != cols) sameShape = false;
}
out_cols += t_cols;
inputs_cols[i + 1] = out_cols;
inputs_ptr[i] = const_cast<T*>(input[i].data<T>());
7 years ago
}
T** ins_gpu =
reinterpret_cast<T**>(inputs_data.CUDAMutableData(context.GetPlace()));
const int* ins_col_gpu = inputs_cols.CUDAData(context.GetPlace());
7 years ago
// computation
// set the thread block and grid according to CurrentDeviceId
const int kThreadsPerBlock = 1024;
int block_cols = kThreadsPerBlock;
if (out_cols < kThreadsPerBlock) { // block_cols is aligned by 32.
block_cols = ((out_cols + 31) >> 5) << 5;
}
int block_rows = kThreadsPerBlock / block_cols;
7 years ago
dim3 block_size = dim3(block_cols, block_rows, 1);
int max_threads = context.GetMaxPhysicalThreadCount();
int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);
int grid_cols =
std::min((out_cols + block_cols - 1) / block_cols, max_blocks);
int grid_rows =
std::min(max_blocks / grid_cols, std::max(out_rows / block_rows, 1));
7 years ago
dim3 grid_size = dim3(grid_cols, grid_rows, 1);
if (sameShape) {
KernelConcat<<<grid_size, block_size, 0, context.stream()>>>(
ins_gpu, cols, out_rows, out_cols, output->data<T>());
} else {
KernelConcat<<<grid_size, block_size, 0, context.stream()>>>(
ins_gpu, ins_col_gpu, static_cast<int>(inputs_cols.size()), out_rows,
out_cols, output->data<T>());
}
}
};
/*
* All tensors' dimension should be the same and the values of
* each dimension are the same, except the axis dimension.
*/
template <typename T>
class ConcatGradFunctor<platform::CUDADeviceContext, T> {
public:
void operator()(const platform::CUDADeviceContext& context,
const framework::Tensor& input, const int axis,
std::vector<framework::Tensor>& outputs) {
// TODO(zcd): Add input data validity checking
int num = outputs.size();
int input_row = 1;
auto dim_0 = outputs[0].dims();
for (int i = 0; i < axis; ++i) {
input_row *= dim_0[i];
}
int output_col_0 = outputs[0].numel() / input_row;
int input_col = 0;
bool sameShape = true;
framework::Vector<int16_t> outputs_data(num * sizeof(T*) / 2);
framework::Vector<int> outputs_cols(num + 1);
outputs_cols[0] = 0;
T** outputs_ptr = reinterpret_cast<T**>(outputs_data.data());
7 years ago
for (int i = 0; i < num; ++i) {
int t_col = outputs[i].numel() / input_row;
if (sameShape) {
if (t_col != output_col_0) sameShape = false;
}
input_col += t_col;
outputs_cols[i + 1] = input_col;
outputs_ptr[i] = outputs[i].data<T>();
}
T** outs_gpu =
reinterpret_cast<T**>(outputs_data.CUDAMutableData(context.GetPlace()));
const int* outs_col_gpu = outputs_cols.CUDAData(context.GetPlace());
// computation
const int kThreadsPerBlock = 1024;
int block_cols = kThreadsPerBlock;
if (input_col < kThreadsPerBlock) { // block_cols is aligned by 32.
block_cols = ((input_col + 31) >> 5) << 5;
}
int block_rows = kThreadsPerBlock / block_cols;
dim3 block_size = dim3(block_cols, block_rows, 1);
int max_threads = context.GetMaxPhysicalThreadCount();
int max_blocks = std::max(max_threads / kThreadsPerBlock, 1);
int grid_cols =
std::min((input_col + block_cols - 1) / block_cols, max_blocks);
int grid_rows =
std::min(max_blocks / grid_cols, std::max(input_row / block_rows, 1));
dim3 grid_size = dim3(grid_cols, grid_rows, 1);
if (sameShape) {
KernelConcatGrad<<<grid_size, block_size, 0, context.stream()>>>(
input.data<T>(), input_row, input_col, output_col_0, outs_gpu);
} else {
KernelConcatGrad<<<grid_size, block_size, 0, context.stream()>>>(
input.data<T>(), input_row, input_col, outs_col_gpu,
static_cast<int>(outputs_cols.size()), outs_gpu);
}
7 years ago
}
};
template class ConcatFunctor<platform::CUDADeviceContext, int>;
template class ConcatFunctor<platform::CUDADeviceContext, int64_t>;
template class ConcatFunctor<platform::CUDADeviceContext, float>;
template class ConcatFunctor<platform::CUDADeviceContext, double>;
template class ConcatGradFunctor<platform::CUDADeviceContext, int>;
template class ConcatGradFunctor<platform::CUDADeviceContext, int64_t>;
template class ConcatGradFunctor<platform::CUDADeviceContext, float>;
template class ConcatGradFunctor<platform::CUDADeviceContext, double>;
7 years ago
} // namespace math
} // namespace operators
} // namespace paddle