|
|
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#include "paddle/fluid/operators/yolov3_loss_op.h"
|
|
|
|
#include "paddle/fluid/framework/op_registry.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
using framework::Tensor;
|
|
|
|
|
|
|
|
class Yolov3LossOp : public framework::OperatorWithKernel {
|
|
|
|
public:
|
|
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("X"),
|
|
|
|
"Input(X) of Yolov3LossOp should not be null.");
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("GTBox"),
|
|
|
|
"Input(GTBox) of Yolov3LossOp should not be null.");
|
|
|
|
PADDLE_ENFORCE(ctx->HasOutput("Loss"),
|
|
|
|
"Output(Loss) of Yolov3LossOp should not be null.");
|
|
|
|
|
|
|
|
auto dim_x = ctx->GetInputDim("X");
|
|
|
|
auto dim_gt = ctx->GetInputDim("GTBox");
|
|
|
|
auto anchors = ctx->Attrs().Get<std::vector<int>>("anchors");
|
|
|
|
auto class_num = ctx->Attrs().Get<int>("class_num");
|
|
|
|
PADDLE_ENFORCE_EQ(dim_x.size(), 4, "Input(X) should be a 4-D tensor.");
|
|
|
|
PADDLE_ENFORCE_EQ(dim_x[2], dim_x[3],
|
|
|
|
"Input(X) dim[3] and dim[4] should be euqal.");
|
|
|
|
PADDLE_ENFORCE_EQ(dim_x[1], anchors.size() / 2 * (5 + class_num),
|
|
|
|
"Input(X) dim[1] should be equal to (anchor_number * (5 "
|
|
|
|
"+ class_num)).");
|
|
|
|
PADDLE_ENFORCE_EQ(dim_gt.size(), 3, "Input(GTBox) should be a 3-D tensor");
|
|
|
|
PADDLE_ENFORCE_EQ(dim_gt[2], 5, "Input(GTBox) dim[2] should be 5");
|
|
|
|
PADDLE_ENFORCE_GT(anchors.size(), 0,
|
|
|
|
"Attr(anchors) length should be greater then 0.");
|
|
|
|
PADDLE_ENFORCE_EQ(anchors.size() % 2, 0,
|
|
|
|
"Attr(anchors) length should be even integer.");
|
|
|
|
PADDLE_ENFORCE_GT(class_num, 0,
|
|
|
|
"Attr(class_num) should be an integer greater then 0.");
|
|
|
|
|
|
|
|
std::vector<int64_t> dim_out({1});
|
|
|
|
ctx->SetOutputDim("Loss", framework::make_ddim(dim_out));
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
|
|
const framework::ExecutionContext& ctx) const override {
|
|
|
|
return framework::OpKernelType(
|
|
|
|
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
|
|
|
|
platform::CPUPlace());
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class Yolov3LossOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
public:
|
|
|
|
void Make() override {
|
|
|
|
AddInput("X",
|
|
|
|
"The input tensor of YOLO v3 loss operator, "
|
|
|
|
"This is a 4-D tensor with shape of [N, C, H, W]."
|
|
|
|
"H and W should be same, and the second dimention(C) stores"
|
|
|
|
"box locations, confidence score and classification one-hot"
|
|
|
|
"key of each anchor box");
|
|
|
|
AddInput("GTBox",
|
|
|
|
"The input tensor of ground truth boxes, "
|
|
|
|
"This is a 3-D tensor with shape of [N, max_box_num, 5], "
|
|
|
|
"max_box_num is the max number of boxes in each image, "
|
|
|
|
"In the third dimention, stores label, x, y, w, h, "
|
|
|
|
"label is an integer to specify box class, x, y is the "
|
|
|
|
"center cordinate of boxes and w, h is the width and height"
|
|
|
|
"and x, y, w, h should be divided by input image height to "
|
|
|
|
"scale to [0, 1].");
|
|
|
|
AddOutput("Loss",
|
|
|
|
"The output yolov3 loss tensor, "
|
|
|
|
"This is a 1-D tensor with shape of [1]");
|
|
|
|
|
|
|
|
AddAttr<int>("class_num", "The number of classes to predict.");
|
|
|
|
AddAttr<std::vector<int>>("anchors",
|
|
|
|
"The anchor width and height, "
|
|
|
|
"it will be parsed pair by pair.");
|
|
|
|
AddAttr<float>("ignore_thresh",
|
|
|
|
"The ignore threshold to ignore confidence loss.");
|
|
|
|
AddAttr<float>("lambda_xy", "The weight of x, y location loss.")
|
|
|
|
.SetDefault(1.0);
|
|
|
|
AddAttr<float>("lambda_wh", "The weight of w, h location loss.")
|
|
|
|
.SetDefault(1.0);
|
|
|
|
AddAttr<float>(
|
|
|
|
"lambda_conf_obj",
|
|
|
|
"The weight of confidence score loss in locations with target object.")
|
|
|
|
.SetDefault(1.0);
|
|
|
|
AddAttr<float>("lambda_conf_noobj",
|
|
|
|
"The weight of confidence score loss in locations without "
|
|
|
|
"target object.")
|
|
|
|
.SetDefault(1.0);
|
|
|
|
AddAttr<float>("lambda_class", "The weight of classification loss.")
|
|
|
|
.SetDefault(1.0);
|
|
|
|
AddComment(R"DOC(
|
|
|
|
This operator generate yolov3 loss by given predict result and ground
|
|
|
|
truth boxes.
|
|
|
|
|
|
|
|
The output of previous network is in shape [N, C, H, W], while H and W
|
|
|
|
should be the same, specify the grid size, each grid point predict given
|
|
|
|
number boxes, this given number is specified by anchors, it should be
|
|
|
|
half anchors length, which following will be represented as S. In the
|
|
|
|
second dimention(the channel dimention), C should be S * (class_num + 5),
|
|
|
|
class_num is the box categoriy number of source dataset(such as coco),
|
|
|
|
so in the second dimention, stores 4 box location coordinates x, y, w, h
|
|
|
|
and confidence score of the box and class one-hot key of each anchor box.
|
|
|
|
|
|
|
|
While the 4 location coordinates if $$tx, ty, tw, th$$, the box predictions
|
|
|
|
correspnd to:
|
|
|
|
|
|
|
|
$$
|
|
|
|
b_x = \sigma(t_x) + c_x
|
|
|
|
b_y = \sigma(t_y) + c_y
|
|
|
|
b_w = p_w e^{t_w}
|
|
|
|
b_h = p_h e^{t_h}
|
|
|
|
$$
|
|
|
|
|
|
|
|
While $$c_x, c_y$$ is the left top corner of current grid and $$p_w, p_h$$
|
|
|
|
is specified by anchors.
|
|
|
|
|
|
|
|
As for confidence score, it is the logistic regression value of IoU between
|
|
|
|
anchor boxes and ground truth boxes, the score of the anchor box which has
|
|
|
|
the max IoU should be 1, and if the anchor box has IoU bigger then ignore
|
|
|
|
thresh, the confidence score loss of this anchor box will be ignored.
|
|
|
|
|
|
|
|
Therefore, the yolov3 loss consist of three major parts, box location loss,
|
|
|
|
confidence score loss, and classification loss. The MSE loss is used for
|
|
|
|
box location, and binary cross entropy loss is used for confidence score
|
|
|
|
loss and classification loss.
|
|
|
|
|
|
|
|
Final loss will be represented as follow.
|
|
|
|
|
|
|
|
$$
|
|
|
|
loss = \lambda_{xy} * loss_{xy} + \lambda_{wh} * loss_{wh}
|
|
|
|
+ \lambda_{conf_obj} * loss_{conf_obj}
|
|
|
|
+ \lambda_{conf_noobj} * loss_{conf_noobj}
|
|
|
|
+ \lambda_{class} * loss_{class}
|
|
|
|
$$
|
|
|
|
)DOC");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class Yolov3LossOpGrad : public framework::OperatorWithKernel {
|
|
|
|
public:
|
|
|
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
|
|
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) should not be null");
|
|
|
|
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Loss")),
|
|
|
|
"Input(Loss@GRAD) should not be null");
|
|
|
|
auto dim_x = ctx->GetInputDim("X");
|
|
|
|
if (ctx->HasOutput(framework::GradVarName("X"))) {
|
|
|
|
ctx->SetOutputDim(framework::GradVarName("X"), dim_x);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
protected:
|
|
|
|
framework::OpKernelType GetExpectedKernelType(
|
|
|
|
const framework::ExecutionContext& ctx) const override {
|
|
|
|
return framework::OpKernelType(
|
|
|
|
framework::ToDataType(ctx.Input<Tensor>("X")->type()),
|
|
|
|
platform::CPUPlace());
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class Yolov3LossGradMaker : public framework::SingleGradOpDescMaker {
|
|
|
|
public:
|
|
|
|
using framework::SingleGradOpDescMaker::SingleGradOpDescMaker;
|
|
|
|
|
|
|
|
protected:
|
|
|
|
std::unique_ptr<framework::OpDesc> Apply() const override {
|
|
|
|
auto* op = new framework::OpDesc();
|
|
|
|
op->SetType("yolov3_loss_grad");
|
|
|
|
op->SetInput("X", Input("X"));
|
|
|
|
op->SetInput("GTBox", Input("GTBox"));
|
|
|
|
op->SetInput(framework::GradVarName("Loss"), OutputGrad("Loss"));
|
|
|
|
|
|
|
|
op->SetAttrMap(Attrs());
|
|
|
|
|
|
|
|
op->SetOutput(framework::GradVarName("X"), InputGrad("X"));
|
|
|
|
op->SetOutput(framework::GradVarName("GTBox"), {});
|
|
|
|
return std::unique_ptr<framework::OpDesc>(op);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OPERATOR(yolov3_loss, ops::Yolov3LossOp, ops::Yolov3LossOpMaker,
|
|
|
|
ops::Yolov3LossGradMaker);
|
|
|
|
REGISTER_OPERATOR(yolov3_loss_grad, ops::Yolov3LossOpGrad);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
|
|
yolov3_loss,
|
|
|
|
ops::Yolov3LossKernel<paddle::platform::CPUDeviceContext, float>);
|
|
|
|
REGISTER_OP_CPU_KERNEL(
|
|
|
|
yolov3_loss_grad,
|
|
|
|
ops::Yolov3LossGradKernel<paddle::platform::CPUDeviceContext, float>);
|