You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
55 lines
2.0 KiB
55 lines
2.0 KiB
5 years ago
|
# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
from __future__ import print_function
|
||
|
|
||
|
import unittest
|
||
|
import numpy as np
|
||
|
import sys
|
||
|
import paddle.fluid.core as core
|
||
|
import paddle.fluid as fluid
|
||
|
import paddle.fluid.layers as layers
|
||
|
from paddle.fluid.executor import Executor
|
||
|
|
||
|
|
||
|
class TestMaskedSelect(unittest.TestCase):
|
||
|
def test_masked_select(self):
|
||
|
|
||
|
mask_shape = [4, 1]
|
||
|
shape = [4, 4]
|
||
|
data = np.random.random(mask_shape).astype("float32")
|
||
|
input_data = np.random.random(shape).astype("float32")
|
||
|
mask_data = data > 0.5
|
||
|
mask_data_b = np.broadcast_to(mask_data, shape)
|
||
|
npresult = input_data[np.where(mask_data_b)]
|
||
|
|
||
|
input_var = layers.create_tensor(dtype="float32", name="input")
|
||
|
mask_var = layers.create_tensor(dtype="bool", name="mask")
|
||
|
|
||
|
output = layers.masked_select(input=input_var, mask=mask_var)
|
||
|
for use_cuda in ([False, True]
|
||
|
if core.is_compiled_with_cuda() else [False]):
|
||
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||
|
exe = Executor(place)
|
||
|
result = exe.run(fluid.default_main_program(),
|
||
|
feed={"input": input_data,
|
||
|
"mask": mask_data},
|
||
|
fetch_list=[output])
|
||
|
|
||
|
self.assertTrue(np.isclose(npresult, result).all())
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
unittest.main()
|