Paddle/python/paddle/fluid/tests/unittests/test_masked_select.py

55 lines
2.0 KiB

# Copyright (c) 2019 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
from __future__ import print_function
import unittest
import numpy as np
import sys
import paddle.fluid.core as core
import paddle.fluid as fluid
import paddle.fluid.layers as layers
from paddle.fluid.executor import Executor
class TestMaskedSelect(unittest.TestCase):
def test_masked_select(self):
mask_shape = [4, 1]
shape = [4, 4]
data = np.random.random(mask_shape).astype("float32")
input_data = np.random.random(shape).astype("float32")
mask_data = data > 0.5
mask_data_b = np.broadcast_to(mask_data, shape)
npresult = input_data[np.where(mask_data_b)]
input_var = layers.create_tensor(dtype="float32", name="input")
mask_var = layers.create_tensor(dtype="bool", name="mask")
output = layers.masked_select(input=input_var, mask=mask_var)
for use_cuda in ([False, True]
if core.is_compiled_with_cuda() else [False]):
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
exe = Executor(place)
result = exe.run(fluid.default_main_program(),
feed={"input": input_data,
"mask": mask_data},
fetch_list=[output])
self.assertTrue(np.isclose(npresult, result).all())
if __name__ == "__main__":
unittest.main()