You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/framework/parallel_executor.cc

163 lines
5.7 KiB

7 years ago
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/framework/parallel_executor.h"
#include "paddle/fluid/platform/profiler.h"
7 years ago
7 years ago
#include <string>
7 years ago
#include <vector>
7 years ago
#ifdef PADDLE_WITH_CUDA
#include "paddle/fluid/platform/nccl_helper.h"
7 years ago
#endif
7 years ago
#include "paddle/fluid/framework/details/multi_devices_graph_builder.h"
#include "paddle/fluid/framework/details/threaded_ssa_graph_executor.h"
7 years ago
namespace paddle {
namespace framework {
class ParallelExecutorPrivate {
public:
explicit ParallelExecutorPrivate(const std::vector<platform::Place> &places)
7 years ago
: places_(places) {}
std::vector<platform::Place> places_;
std::vector<Scope *> local_scopes_;
Scope *global_scope_;
7 years ago
std::unique_ptr<details::SSAGraphExecutor> executor_;
7 years ago
#ifdef PADDLE_WITH_CUDA
std::unique_ptr<platform::NCCLContextMap> nccl_ctxs_;
7 years ago
#endif
};
ParallelExecutor::ParallelExecutor(
size_t num_threads, bool use_event,
const std::vector<platform::Place> &places,
const std::unordered_set<std::string> &params,
const ProgramDesc &startup_program, const ProgramDesc &main_program,
const std::string &loss_var_name, Scope *scope, bool allow_op_delay)
: member_(new ParallelExecutorPrivate(places)) {
member_->global_scope_ = scope;
// Step 1. RunStartupProgram and Bcast the params to devs.
Executor exe(places[0]);
exe.Run(startup_program, scope, 0);
// Create local scopes
for (size_t i = 0; i < member_->places_.size(); ++i) {
member_->local_scopes_.push_back(&scope->NewScope());
}
7 years ago
// Bcast Parameters to all GPUs
#ifdef PADDLE_WITH_CUDA
member_->nccl_ctxs_.reset(new platform::NCCLContextMap(member_->places_));
#endif
if (platform::is_gpu_place(places[0]) &&
7 years ago
member_->local_scopes_.size() != 1) { // Is CUDA
BCastParamsToGPUs(startup_program);
}
7 years ago
// Startup Program has been run. All local scopes has correct parameters.
7 years ago
// Step 2. Convert main_program to SSA form and dependency graph. Also, insert
// ncclOp
#ifdef PADDLE_WITH_CUDA
details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
params, member_->local_scopes_,
member_->nccl_ctxs_.get());
7 years ago
#else
details::MultiDevSSAGraphBuilder builder(member_->places_, loss_var_name,
params, member_->local_scopes_);
#endif
auto graph = builder.Build(main_program);
member_->executor_.reset(new details::ThreadedSSAGraphExecutor(
num_threads, use_event, member_->local_scopes_, places, std::move(graph),
allow_op_delay));
// Step 3. Create vars in each scope;
for (auto *scope : member_->local_scopes_) {
for (auto *var : main_program.Block(0).AllVars()) {
if (scope->FindVar(var->Name()) != nullptr) {
continue;
}
InitializeVariable(scope->Var(var->Name()), var->GetType());
}
}
}
void ParallelExecutor::BCastParamsToGPUs(
const ProgramDesc &startup_program) const {
7 years ago
#ifdef PADDLE_WITH_CUDA
auto *main_scope = member_->local_scopes_[0];
7 years ago
for (auto *var_desc : startup_program.Block(0).AllVars()) {
7 years ago
size_t idx = var_desc->Name().find("@GRAD");
if (idx != std::string::npos) continue;
if (var_desc->GetType() == proto::VarType::LOD_TENSOR) {
auto &main_tensor =
main_scope->FindVar(var_desc->Name())->Get<LoDTensor>();
7 years ago
auto &dims = main_tensor.dims();
7 years ago
if (paddle::platform::is_gpu_place(main_tensor.place())) {
size_t numel = main_tensor.numel();
ncclDataType_t data_type = platform::ToNCCLDataType(main_tensor.type());
platform::NCCLGroupGuard guard;
for (size_t i = 0; i < member_->places_.size(); ++i) {
auto place = member_->places_[i];
void *buffer;
if (i == 0) {
buffer = const_cast<void *>(main_tensor.data<void>());
} else {
auto local_scope = member_->local_scopes_[i];
auto *t =
local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
t->Resize(dims);
buffer = t->mutable_data(place, main_tensor.type());
}
auto &nccl_ctx = member_->nccl_ctxs_->at(place);
platform::dynload::ncclBcast(buffer, numel, data_type, 0,
nccl_ctx.comm_, nccl_ctx.stream());
}
} else {
platform::CPUPlace cpu;
for (size_t i = 1; i < member_->places_.size(); ++i) {
auto local_scope = member_->local_scopes_[i];
7 years ago
auto *t = local_scope->Var(var_desc->Name())->GetMutable<LoDTensor>();
t->Resize(dims);
7 years ago
t->mutable_data(cpu, main_tensor.type());
paddle::framework::TensorCopy(main_tensor, cpu, t);
7 years ago
}
}
7 years ago
}
member_->nccl_ctxs_->WaitAll();
7 years ago
}
7 years ago
#else
PADDLE_THROW("Not compiled with CUDA");
#endif
}
void ParallelExecutor::Run(const std::vector<std::string> &fetch_tensors,
const std::string &fetched_var_name) {
platform::RecordBlock b(0);
auto fetch_data = member_->executor_->Run(fetch_tensors);
*member_->global_scope_->Var(fetched_var_name)->GetMutable<FeedFetchList>() =
fetch_data;
}
} // namespace framework
7 years ago
} // namespace paddle