You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/fake_quantize_op.h

333 lines
13 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#pragma once
#include <string>
#include "paddle/fluid/framework/eigen.h"
#include "paddle/fluid/framework/op_registry.h"
#include "paddle/fluid/framework/tensor_util.h"
#include "paddle/fluid/memory/malloc.h"
#include "paddle/fluid/operators/math/blas.h"
#include "paddle/fluid/platform/hostdevice.h"
#include "paddle/fluid/platform/transform.h"
namespace paddle {
namespace operators {
template <typename T>
inline HOSTDEVICE T inverse(T s) {
T eps = 1e-6;
return s <= 1e-30 ? 1.0 / (s + eps) : 1.0 / s;
}
template <typename DeviceContext, typename T>
struct FindAbsMaxFunctor {
void operator()(const DeviceContext& ctx, const T* in, const int num, T* out);
};
template <typename DeviceContext, typename T>
struct ClipAndFakeQuantFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in,
const framework::Tensor& scale, const int bin_cnt,
framework::Tensor* out);
};
template <typename DeviceContext, typename T>
struct ClipAndFakeQuantDequantFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in,
const framework::Tensor& scale, const int bin_cnt,
framework::Tensor* out);
};
template <typename DeviceContext, typename T>
struct FindRangeAbsMaxFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& cur_scale,
const framework::Tensor& last_scale,
const framework::Tensor& iter, const int window_size,
framework::Tensor* scales_arr, framework::Tensor* out_scale);
};
template <typename DeviceContext, typename T>
struct FindChannelAbsMaxFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in_tensor,
const int quant_axis, T* out_abs_max);
};
template <typename DeviceContext, typename T>
struct ChannelClipAndFakeQuantFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in,
const framework::Tensor& scale, const int bin_cnt,
const int quant_axis, framework::Tensor* out);
};
template <typename DeviceContext, typename T>
struct FindMovingAverageAbsMaxFunctor {
void operator()(const DeviceContext& ctx, const framework::Tensor& in_accum,
const framework::Tensor& in_state,
const framework::Tensor& cur_scale,
framework::Tensor* out_state, framework::Tensor* out_accum,
framework::Tensor* out_scale);
};
template <typename DeviceContext, typename T>
class FakeAbsMaxKernelBase : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto* out = context.Output<framework::Tensor>("Out");
auto* out_scale = context.Output<framework::Tensor>("OutScale");
T* out_s = out_scale->mutable_data<T>(context.GetPlace());
int bit_length = context.Attr<int>("bit_length");
int bin_cnt = std::pow(2, bit_length - 1) - 1;
auto& dev_ctx = context.template device_context<DeviceContext>();
const T* in_data = in->data<T>();
FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in_data, in->numel(), out_s);
RunClipFunctor(dev_ctx, *in, *out_scale, bin_cnt, out);
}
virtual ~FakeAbsMaxKernelBase() = default;
protected:
virtual void RunClipFunctor(const DeviceContext& dev_ctx,
const framework::Tensor& in,
const framework::Tensor& scale, int bin_cnt,
framework::Tensor* out) const = 0;
};
template <typename DeviceContext, typename T>
class FakeQuantizeAbsMaxKernel : public FakeAbsMaxKernelBase<DeviceContext, T> {
protected:
void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
const framework::Tensor& scale, int bin_cnt,
framework::Tensor* out) const override {
ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, in, scale, bin_cnt,
out);
}
};
template <typename DeviceContext, typename T>
class FakeQuantizeDequantizeAbsMaxKernel
: public FakeAbsMaxKernelBase<DeviceContext, T> {
protected:
void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
const framework::Tensor& scale, int bin_cnt,
framework::Tensor* out) const override {
ClipAndFakeQuantDequantFunctor<DeviceContext, T>()(dev_ctx, in, scale,
bin_cnt, out);
}
};
template <typename DeviceContext, typename T>
class FakeChannelWiseQuantizeAbsMaxKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto* out = context.Output<framework::Tensor>("Out");
auto* out_scale = context.Output<framework::Tensor>("OutScale");
T* out_scale_data = out_scale->mutable_data<T>(context.GetPlace());
out->mutable_data<T>(context.GetPlace());
int bit_length = context.Attr<int>("bit_length");
int bin_cnt = std::pow(2, bit_length - 1) - 1;
int quant_axis = context.Attr<int>("quant_axis");
auto& dev_ctx = context.template device_context<DeviceContext>();
FindChannelAbsMaxFunctor<DeviceContext, T>()(dev_ctx, *in, quant_axis,
out_scale_data);
ChannelClipAndFakeQuantFunctor<DeviceContext, T>()(
dev_ctx, *in, *out_scale, bin_cnt, quant_axis, out);
}
};
template <typename DeviceContext, typename T>
class FakeQuantizeRangeAbsMaxKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto* in_scale = context.Input<framework::Tensor>("InScale");
auto* out = context.Output<framework::Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
bool is_test = context.Attr<bool>("is_test");
int bit_length = context.Attr<int>("bit_length");
int bin_cnt = std::pow(2, bit_length - 1) - 1;
auto& dev_ctx = context.template device_context<DeviceContext>();
// testing
if (is_test) {
ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *in_scale,
bin_cnt, out);
return;
}
// training
auto* out_scale = context.Output<framework::Tensor>("OutScale");
auto* out_scales = context.Output<framework::Tensor>("OutScales");
auto* iter = context.Input<framework::Tensor>("Iter");
int window_size = context.Attr<int>("window_size");
out_scale->mutable_data<T>(context.GetPlace());
framework::Tensor cur_scale;
T* cur_scale_data = cur_scale.mutable_data<T>({1}, context.GetPlace());
FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
cur_scale_data);
FindRangeAbsMaxFunctor<DeviceContext, T>()(dev_ctx, cur_scale, *in_scale,
*iter, window_size, out_scales,
out_scale);
ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, *in, *out_scale,
bin_cnt, out);
}
};
template <typename DeviceContext, typename T>
class FakeMovingAverageAbsMaxKernelBase : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto* in_scale = context.Input<framework::Tensor>("InScale");
auto* out = context.Output<framework::Tensor>("Out");
out->mutable_data<T>(context.GetPlace());
bool is_test = context.Attr<bool>("is_test");
int bit_length = context.Attr<int>("bit_length");
int bin_cnt = std::pow(2, bit_length - 1) - 1;
auto& dev_ctx = context.template device_context<DeviceContext>();
// testing
if (is_test) {
RunClipFunctor(dev_ctx, *in, *in_scale, bin_cnt, out);
return;
}
// training
auto* in_accum = context.Input<framework::Tensor>("InAccum");
auto* in_state = context.Input<framework::Tensor>("InState");
auto cur_scale = memory::Alloc(dev_ctx, sizeof(T));
T* cur_scale_data = static_cast<T*>(cur_scale->ptr());
FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
cur_scale_data);
auto* out_state = context.Output<framework::Tensor>("OutState");
auto* out_accum = context.Output<framework::Tensor>("OutAccum");
auto* out_scale = context.Output<framework::Tensor>("OutScale");
out_state->mutable_data<T>(context.GetPlace());
out_accum->mutable_data<T>(context.GetPlace());
out_scale->mutable_data<T>(context.GetPlace());
float moving_rate = context.Attr<float>("moving_rate");
FindMovingAverageAbsMaxFunctor<DeviceContext, T>()(
dev_ctx, *in_accum, *in_state, cur_scale_data, moving_rate, out_state,
out_accum, out_scale);
RunClipFunctor(dev_ctx, *in, *out_scale, bin_cnt, out);
}
virtual ~FakeMovingAverageAbsMaxKernelBase() = default;
protected:
virtual void RunClipFunctor(const DeviceContext& dev_ctx,
const framework::Tensor& in,
const framework::Tensor& in_scale, int bin_cnt,
framework::Tensor* out) const = 0;
};
template <typename DeviceContext, typename T>
class FakeQuantizeMovingAverageAbsMaxKernel
: public FakeMovingAverageAbsMaxKernelBase<DeviceContext, T> {
protected:
void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
const framework::Tensor& in_scale, int bin_cnt,
framework::Tensor* out) const override {
ClipAndFakeQuantFunctor<DeviceContext, T>()(dev_ctx, in, in_scale, bin_cnt,
out);
}
};
template <typename DeviceContext, typename T>
class FakeQuantizeDequantizeMovingAverageAbsMaxKernel
: public FakeMovingAverageAbsMaxKernelBase<DeviceContext, T> {
protected:
void RunClipFunctor(const DeviceContext& dev_ctx, const framework::Tensor& in,
const framework::Tensor& in_scale, int bin_cnt,
framework::Tensor* out) const override {
ClipAndFakeQuantDequantFunctor<DeviceContext, T>()(dev_ctx, in, in_scale,
bin_cnt, out);
}
};
template <typename DeviceContext, typename T>
class MovingAverageAbsMaxScaleKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* in = context.Input<framework::Tensor>("X");
auto& dev_ctx = context.template device_context<DeviceContext>();
bool is_test = context.Attr<bool>("is_test");
// testing
if (is_test) {
return;
}
// training
auto* in_accum = context.Input<framework::Tensor>("InAccum");
auto* in_state = context.Input<framework::Tensor>("InState");
auto cur_scale = memory::Alloc(dev_ctx, sizeof(T));
T* cur_scale_data = static_cast<T*>(cur_scale->ptr());
FindAbsMaxFunctor<DeviceContext, T>()(dev_ctx, in->data<T>(), in->numel(),
cur_scale_data);
auto* out_state = context.Output<framework::Tensor>("OutState");
auto* out_accum = context.Output<framework::Tensor>("OutAccum");
auto* out_scale = context.Output<framework::Tensor>("OutScale");
out_state->mutable_data<T>(context.GetPlace());
out_accum->mutable_data<T>(context.GetPlace());
out_scale->mutable_data<T>(context.GetPlace());
float moving_rate = context.Attr<float>("moving_rate");
FindMovingAverageAbsMaxFunctor<DeviceContext, T>()(
dev_ctx, *in_accum, *in_state, cur_scale_data, moving_rate, out_state,
out_accum, out_scale);
}
};
template <typename DeviceContext, typename T>
class FakeQuantDequantGradKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* d_out =
context.Input<framework::LoDTensor>(framework::GradVarName("Out"));
auto x_grad_name = framework::GradVarName("X");
auto* d_x = context.Output<framework::LoDTensor>(x_grad_name);
PADDLE_ENFORCE_NOT_NULL(
d_x, platform::errors::PreconditionNotMet(
"FakeQuantDequantGradOp doesn't have the output named %s.",
x_grad_name));
// Initialize dx as same as d_out
d_x->mutable_data<T>(context.GetPlace());
framework::TensorCopy(*d_out, context.GetPlace(), d_x);
}
};
} // namespace operators
} // namespace paddle