You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
248 lines
9.1 KiB
248 lines
9.1 KiB
4 years ago
|
/* Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||
|
|
||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
you may not use this file except in compliance with the License.
|
||
|
You may obtain a copy of the License at
|
||
|
|
||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||
|
|
||
|
Unless required by applicable law or agreed to in writing, software
|
||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
See the License for the specific language governing permissions and
|
||
|
limitations under the License. */
|
||
|
|
||
|
#include "paddle/fluid/framework/op_registry.h"
|
||
|
#include "paddle/fluid/operators/math/math_cuda_utils.h"
|
||
|
#include "paddle/fluid/operators/softmax_op.h"
|
||
|
#include "paddle/fluid/platform/cudnn_helper.h"
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace platform {
|
||
|
struct CUDAPlace;
|
||
|
struct float16;
|
||
|
} // namespace platform
|
||
|
} // namespace paddle
|
||
|
|
||
|
namespace paddle {
|
||
|
namespace operators {
|
||
|
|
||
|
using ScopedTensorDescriptor = platform::ScopedTensorDescriptor;
|
||
|
using DataLayout = platform::DataLayout;
|
||
|
using Tensor = framework::Tensor;
|
||
|
|
||
|
static inline int SizeOutAxis(const int axis, DDim dims) {
|
||
|
int size = 1;
|
||
|
for (int i = axis + 1; i < dims.size(); i++) {
|
||
|
size *= dims[i];
|
||
|
}
|
||
|
return size;
|
||
|
}
|
||
|
|
||
|
template <typename T, int VLEN>
|
||
|
union vec_t {
|
||
|
static_assert(sizeof(T) == -1, "vec_t is only available by specialization.");
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
union vec_t<float, 4> {
|
||
|
float4 s;
|
||
|
float v[4];
|
||
|
};
|
||
|
|
||
|
template <>
|
||
|
union vec_t<platform::float16, 4> {
|
||
|
int2 s;
|
||
|
platform::float16 v[4];
|
||
|
};
|
||
|
|
||
|
template <typename T, typename VECT, int VPT, int WARP_PER_BLOCK>
|
||
|
__global__ void VecSoftmaxForward(T* dst, const T* src, const int batch_size,
|
||
|
const int softmax_ele) {
|
||
|
int offset = blockIdx.x * softmax_ele * WARP_PER_BLOCK;
|
||
|
int idx = threadIdx.x * VPT;
|
||
|
|
||
|
VECT buf = reinterpret_cast<const VECT*>(&src[offset + idx])[0];
|
||
|
T* bufp = reinterpret_cast<T*>(&buf);
|
||
|
float4 val4;
|
||
|
float* val4p = reinterpret_cast<float*>(&val4);
|
||
|
for (int i = 0; i < VPT; ++i) {
|
||
|
val4p[i] = static_cast<float>(bufp[i]);
|
||
|
}
|
||
|
float val = val4.x + val4.y + val4.z + val4.w;
|
||
|
float max_val = math::warpReduceMax<float>(
|
||
|
max(max(val4.x, val4.y), max(val4.z, val4.w)), 0xffffffff);
|
||
|
float4 tmp4 = make_float4(__expf(val4.x - max_val), __expf(val4.y - max_val),
|
||
|
__expf(val4.z - max_val), __expf(val4.w - max_val));
|
||
|
float* tmp4p = reinterpret_cast<float*>(&tmp4);
|
||
|
float invsum = 1.f / (math::warpReduceSum<float>(
|
||
|
tmp4.x + tmp4.y + tmp4.z + tmp4.w, 0xffffffff) +
|
||
|
1e-6f);
|
||
|
for (int i = 0; i < VPT; ++i) {
|
||
|
bufp[i] = static_cast<T>(tmp4p[i] * invsum);
|
||
|
}
|
||
|
reinterpret_cast<VECT*>(&dst[offset + idx])[0] = buf;
|
||
|
}
|
||
|
|
||
|
template <typename T, int VPT, int WARP_PER_BLOCK>
|
||
|
__global__ void VecSoftmaxBackward(T* dst, const T* grad, const T* src,
|
||
|
const int batch_size,
|
||
|
const int softmax_ele) {
|
||
|
const int offset =
|
||
|
blockIdx.x * softmax_ele * WARP_PER_BLOCK + threadIdx.x * VPT;
|
||
|
|
||
|
float local_sum_gy = 0.f;
|
||
|
vec_t<T, VPT> local_grad;
|
||
|
vec_t<T, VPT> local_src;
|
||
|
|
||
|
local_grad.s =
|
||
|
reinterpret_cast<const decltype(local_grad.s)*>(&grad[offset])[0];
|
||
|
local_src.s = reinterpret_cast<const decltype(local_src.s)*>(&src[offset])[0];
|
||
|
|
||
|
for (int i = 0; i < VPT; ++i) {
|
||
|
local_sum_gy += static_cast<float>(local_grad.v[i]) *
|
||
|
static_cast<float>(local_src.v[i]);
|
||
|
}
|
||
|
float sum_gy = math::warpReduceSum<float>(local_sum_gy, 0xffffffff);
|
||
|
|
||
|
vec_t<T, VPT> local_dst;
|
||
|
for (int i = 0; i < VPT; ++i) {
|
||
|
local_dst.v[i] =
|
||
|
static_cast<T>(static_cast<float>(local_src.v[i]) *
|
||
|
(static_cast<float>(local_grad.v[i]) - sum_gy));
|
||
|
}
|
||
|
reinterpret_cast<decltype(local_dst.s)*>(&dst[offset])[0] = local_dst.s;
|
||
|
}
|
||
|
|
||
|
template <typename T>
|
||
|
class SoftmaxCUDNNKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||
|
auto* x = ctx.Input<Tensor>("X");
|
||
|
auto* out = ctx.Output<Tensor>("Out");
|
||
|
out->mutable_data<T>(ctx.GetPlace());
|
||
|
auto* out_data = out->data<T>();
|
||
|
|
||
|
auto dims = x->dims();
|
||
|
const int rank = dims.size();
|
||
|
const int axis = CanonicalAxis(ctx.Attr<int>("axis"), rank);
|
||
|
const int dim = dims[axis];
|
||
|
const int N = SizeToAxis(axis, dims);
|
||
|
const int D = SizeOutAxis(axis, dims);
|
||
|
|
||
|
constexpr int warps_per_block = 4;
|
||
|
if (D == 1 && dim == 128 && N % warps_per_block == 0 && sizeof(T) <= 4) {
|
||
|
// a warp for a batch, 4 elements for a thread, only support the softmax
|
||
|
// dim size = 128 currently
|
||
|
if (sizeof(T) == 2) {
|
||
|
VecSoftmaxForward<
|
||
|
T, int2, 4,
|
||
|
warps_per_block><<<N / warps_per_block, warps_per_block * WARP_SIZE,
|
||
|
0, ctx.cuda_device_context().stream()>>>(
|
||
|
out_data, x->data<T>(), N, dim);
|
||
|
} else if (sizeof(T) == 4) {
|
||
|
VecSoftmaxForward<
|
||
|
T, int4, 4,
|
||
|
warps_per_block><<<N / warps_per_block, warps_per_block * WARP_SIZE,
|
||
|
0, ctx.cuda_device_context().stream()>>>(
|
||
|
out_data, x->data<T>(), N, dim);
|
||
|
} else {
|
||
|
assert(false && "not support");
|
||
|
}
|
||
|
} else {
|
||
|
ScopedTensorDescriptor desc;
|
||
|
std::vector<int> tensor_dims = {N, dim, D, 1};
|
||
|
DataLayout layout = DataLayout::kNCHW;
|
||
|
cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
|
||
|
|
||
|
auto& dev_ctx =
|
||
|
ctx.template device_context<platform::CUDADeviceContext>();
|
||
|
auto handle = dev_ctx.cudnn_handle();
|
||
|
auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
|
||
|
: CUDNN_SOFTMAX_MODE_CHANNEL;
|
||
|
|
||
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxForward(
|
||
|
handle, CUDNN_SOFTMAX_ACCURATE, mode,
|
||
|
platform::CudnnDataType<T>::kOne(), desc_, x->data<T>(),
|
||
|
platform::CudnnDataType<T>::kZero(), desc_, out_data));
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
template <typename T>
|
||
|
class SoftmaxGradCUDNNKernel : public framework::OpKernel<T> {
|
||
|
public:
|
||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||
|
auto* out = ctx.Input<Tensor>("Out");
|
||
|
auto* dout = ctx.Input<Tensor>(framework::GradVarName("Out"));
|
||
|
auto* dx = ctx.Output<Tensor>(framework::GradVarName("X"));
|
||
|
dx->mutable_data<T>(ctx.GetPlace());
|
||
|
auto* dx_data = dx->data<T>();
|
||
|
|
||
|
auto dims = out->dims();
|
||
|
const int rank = dims.size();
|
||
|
const int axis = CanonicalAxis(ctx.Attr<int>("axis"), rank);
|
||
|
const int dim = dims[axis];
|
||
|
const int N = SizeToAxis(axis, dims);
|
||
|
const int D = SizeOutAxis(axis, dims);
|
||
|
|
||
|
constexpr int warps_per_block = 4;
|
||
|
constexpr bool warp_softmax_available =
|
||
|
std::is_same<T, float>::value ||
|
||
|
std::is_same<T, platform::float16>::value;
|
||
|
if (D == 1 && dim == 128 && N % warps_per_block == 0 &&
|
||
|
warp_softmax_available) {
|
||
|
if (std::is_same<T, float>::value) {
|
||
|
VecSoftmaxBackward<
|
||
|
float, 4,
|
||
|
warps_per_block><<<N / warps_per_block, warps_per_block * WARP_SIZE,
|
||
|
0, ctx.cuda_device_context().stream()>>>(
|
||
|
dx->data<float>(), dout->data<float>(), out->data<float>(), N, dim);
|
||
|
} else if (std::is_same<T, platform::float16>::value) {
|
||
|
VecSoftmaxBackward<
|
||
|
platform::float16, 4,
|
||
|
warps_per_block><<<N / warps_per_block, warps_per_block * WARP_SIZE,
|
||
|
0, ctx.cuda_device_context().stream()>>>(
|
||
|
dx->data<platform::float16>(), dout->data<platform::float16>(),
|
||
|
out->data<platform::float16>(), N, dim);
|
||
|
} else {
|
||
|
PADDLE_ENFORCE_EQ(
|
||
|
warp_softmax_available, true,
|
||
|
platform::errors::Unimplemented(
|
||
|
"Warp softmax backward is only available for fp32 and fp16"));
|
||
|
}
|
||
|
} else {
|
||
|
ScopedTensorDescriptor desc;
|
||
|
std::vector<int> tensor_dims = {N, dim, D, 1};
|
||
|
DataLayout layout = DataLayout::kNCHW;
|
||
|
cudnnTensorDescriptor_t desc_ = desc.descriptor<T>(layout, tensor_dims);
|
||
|
|
||
|
auto& dev_ctx =
|
||
|
ctx.template device_context<platform::CUDADeviceContext>();
|
||
|
auto handle = dev_ctx.cudnn_handle();
|
||
|
auto mode = axis == rank - 1 ? CUDNN_SOFTMAX_MODE_INSTANCE
|
||
|
: CUDNN_SOFTMAX_MODE_CHANNEL;
|
||
|
|
||
|
PADDLE_ENFORCE_CUDA_SUCCESS(platform::dynload::cudnnSoftmaxBackward(
|
||
|
handle, CUDNN_SOFTMAX_ACCURATE, mode,
|
||
|
platform::CudnnDataType<T>::kOne(), desc_, out->data<T>(), desc_,
|
||
|
dout->data<T>(), platform::CudnnDataType<T>::kZero(), desc_,
|
||
|
dx_data));
|
||
|
}
|
||
|
}
|
||
|
};
|
||
|
|
||
|
} // namespace operators
|
||
|
} // namespace paddle
|
||
|
|
||
|
namespace ops = paddle::operators;
|
||
|
namespace plat = paddle::platform;
|
||
|
REGISTER_OP_KERNEL(softmax, CUDNN, plat::CUDAPlace,
|
||
|
ops::SoftmaxCUDNNKernel<float>,
|
||
|
ops::SoftmaxCUDNNKernel<double>,
|
||
|
ops::SoftmaxCUDNNKernel<plat::float16>);
|
||
|
REGISTER_OP_KERNEL(softmax_grad, CUDNN, plat::CUDAPlace,
|
||
|
ops::SoftmaxGradCUDNNKernel<float>,
|
||
|
ops::SoftmaxGradCUDNNKernel<double>,
|
||
|
ops::SoftmaxGradCUDNNKernel<plat::float16>);
|