|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#include "paddle/framework/op_registry.h"
|
|
|
|
#include "paddle/operators/net_op.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
namespace operators {
|
|
|
|
|
|
|
|
class FCOp : public NetOp {
|
|
|
|
public:
|
|
|
|
FCOp(const std::string &type, const framework::VariableNameMap &inputs,
|
|
|
|
const framework::VariableNameMap &outputs,
|
|
|
|
const framework::AttributeMap &attrs)
|
|
|
|
: NetOp(type, inputs, outputs, attrs) {
|
|
|
|
PADDLE_ENFORCE(!Inputs("X").empty(),
|
|
|
|
"Inputs(X) of FCOp should not be null.");
|
|
|
|
PADDLE_ENFORCE(!Inputs("W").empty(),
|
|
|
|
"Inputs(W) of FCOp should not be null.");
|
|
|
|
PADDLE_ENFORCE(!Outputs("MulOut").empty(),
|
|
|
|
"Outputs(MulOut) of FCOp should not be null.");
|
|
|
|
PADDLE_ENFORCE_NE(Output("Out"), framework::kEmptyVarName,
|
|
|
|
"Output(Out) of FCOp should not be null.");
|
|
|
|
|
|
|
|
auto x = Inputs("X");
|
|
|
|
auto w = Inputs("W");
|
|
|
|
auto mul_out = Outputs("MulOut");
|
|
|
|
PADDLE_ENFORCE_EQ(
|
|
|
|
x.size(), w.size(),
|
|
|
|
"The size of inputs X(%d) should be the same as that of weights W(%d).",
|
|
|
|
x.size(), w.size());
|
|
|
|
PADDLE_ENFORCE_EQ(mul_out.size(), x.size(),
|
|
|
|
"The size of intermediate mul_out(%d) should be the same "
|
|
|
|
"as that of inputs X(%d).",
|
|
|
|
mul_out.size(), x.size());
|
|
|
|
|
|
|
|
size_t n = x.size();
|
|
|
|
PADDLE_ENFORCE_GE(n, static_cast<size_t>(1),
|
|
|
|
"The size of inputs X(%d) should be no less than 1.", n);
|
|
|
|
|
|
|
|
auto x_num_col_dims = Attr<std::vector<int>>("xNumColDims");
|
|
|
|
|
|
|
|
// Set all values or set no values (use the default value)
|
|
|
|
if (!x_num_col_dims.empty()) {
|
|
|
|
PADDLE_ENFORCE_EQ(x_num_col_dims.size(), n,
|
|
|
|
"The size of attribute xNumColDims(%d) should be the "
|
|
|
|
"same as that of inputs X(%d).",
|
|
|
|
x_num_col_dims.size(), n);
|
|
|
|
} else {
|
|
|
|
x_num_col_dims.resize(n);
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
|
|
x_num_col_dims[i] = 1;
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// mul_out[i] = X[i] * W[i]
|
|
|
|
for (size_t i = 0; i < n; i++) {
|
|
|
|
framework::AttributeMap mul_attr;
|
|
|
|
mul_attr["x_num_col_dims"] = static_cast<int>(x_num_col_dims[i]);
|
|
|
|
mul_attr["y_num_col_dims"] = static_cast<int>(1);
|
|
|
|
AppendOp(
|
|
|
|
framework::OpRegistry::CreateOp("mul", {{"X", {x[i]}}, {"Y", {w[i]}}},
|
|
|
|
{{"Out", {mul_out[i]}}}, mul_attr));
|
|
|
|
}
|
|
|
|
|
|
|
|
// sum_out = X[0] * W[0] + ... + X[n-1] * W[n-1]
|
|
|
|
auto sum_out = mul_out[0];
|
|
|
|
if (n > 1) {
|
|
|
|
PADDLE_ENFORCE_NE(Output("SumOut"), framework::kEmptyVarName,
|
|
|
|
"Output(SumOut) of FCOp should not be null when the "
|
|
|
|
"size of Inputs(X) > 1.");
|
|
|
|
|
|
|
|
sum_out = Output("SumOut");
|
|
|
|
AppendOp(framework::OpRegistry::CreateOp("sum", {{"X", {mul_out}}},
|
|
|
|
{{"Out", {sum_out}}}, {}));
|
|
|
|
} else {
|
|
|
|
if (Output("SumOut") != framework::kEmptyVarName) {
|
|
|
|
this->Rename(Output("SumOut"), framework::kEmptyVarName);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
// add_out = sum_out + b
|
|
|
|
auto b = Input("B");
|
|
|
|
auto add_out = sum_out;
|
|
|
|
if (b != framework::kEmptyVarName) {
|
|
|
|
PADDLE_ENFORCE_NE(
|
|
|
|
Output("AddOut"), framework::kEmptyVarName,
|
|
|
|
"Output(AddOut) of FCOp should not be null when Input(B) is set.");
|
|
|
|
|
|
|
|
add_out = Output("AddOut");
|
|
|
|
AppendOp(framework::OpRegistry::CreateOp(
|
|
|
|
"rowwise_add", {{"X", {sum_out}}, {"b", {Input("B")}}},
|
|
|
|
{{"Out", {add_out}}}, {}));
|
|
|
|
} else {
|
|
|
|
if (Output("AddOut") != framework::kEmptyVarName) {
|
|
|
|
this->Rename(Output("AddOut"), framework::kEmptyVarName);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
auto activation = Attr<std::string>("activation");
|
|
|
|
AppendOp(framework::OpRegistry::CreateOp(activation, {{"X", {add_out}}},
|
|
|
|
{{"Y", {Output("Out")}}}, {}));
|
|
|
|
CompleteAddOp(false);
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
class FCOpMaker : public framework::OpProtoAndCheckerMaker {
|
|
|
|
public:
|
|
|
|
FCOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
|
|
|
|
: OpProtoAndCheckerMaker(proto, op_checker) {
|
|
|
|
AddInput("X",
|
|
|
|
"(A vector of Tensors) each input Tensor can be of arbitrary "
|
|
|
|
"dimension, and will be reshaped to a 2-D matrix of size "
|
|
|
|
"(minibatch, number_of_input_features) according to attribute "
|
|
|
|
"xNumColDims.")
|
|
|
|
.AsDuplicable();
|
|
|
|
AddInput("W",
|
|
|
|
"(A vector of Tensors) the weights of FC operator, a "
|
|
|
|
"vector of 2-D matrix of size "
|
|
|
|
"(number_of_input_features, number_of_neurons).")
|
|
|
|
.AsDuplicable();
|
|
|
|
AddInput("B",
|
|
|
|
"(Tensor) the bias of FC operator, a 1-D vector of size "
|
|
|
|
"number_of_neurons.");
|
|
|
|
|
|
|
|
AddOutput("Out",
|
|
|
|
"(Tensor) the activated output matrix of FC operator, a 2-D "
|
|
|
|
"matrix of size (minibatch, number_of_neurons).");
|
|
|
|
AddOutput("MulOut",
|
|
|
|
"(A vector of Tensors) the intermediate outputs of FC operator, "
|
|
|
|
"each Tensor saving the product of X_i * W_i.")
|
|
|
|
.AsIntermediate()
|
|
|
|
.AsDuplicable();
|
|
|
|
AddOutput(
|
|
|
|
"SumOut",
|
|
|
|
"(Tensor) the intermediate output of FC operator, "
|
|
|
|
"saving the sum of the products of X and W, that is sum{X_i * W_i}.")
|
|
|
|
.AsIntermediate();
|
|
|
|
AddOutput("AddOut",
|
|
|
|
"(Tensor) the non-actived output of FC operator, "
|
|
|
|
"saving sum{X_i * W_i} + B.")
|
|
|
|
.AsIntermediate();
|
|
|
|
AddAttr<std::string>(
|
|
|
|
"activation",
|
|
|
|
"(string, default identity) the activation type of FC operator.")
|
|
|
|
.SetDefault("identity")
|
|
|
|
.InEnum({"identity", "sigmoid", "softmax"});
|
|
|
|
AddAttr<std::vector<int>>(
|
|
|
|
"xNumColDims",
|
|
|
|
"(std::vector<int>) The inputs Tensors of FC operator can be of "
|
|
|
|
"more than 2 dimensions. In that case, each input Tensor `X_i` will be "
|
|
|
|
"reshaped to a 2-D matrix. The matrix's first dimension "
|
|
|
|
"(the length of column) will be the product of `X_i`'s last "
|
|
|
|
"`xNumColDims_i` dimensions, that is "
|
|
|
|
"`X_i.dims[0] x ... x X_i.dims[xNumColDims_i - 1]`. "
|
|
|
|
"The matrix's second dimension (the length of row) will be the product "
|
|
|
|
"of `X_i`'s first `rank - xNumColDims_i` dimensions, that is "
|
|
|
|
"`X_i.dims[xNumColDims_i] x ... x X_i.dims[rank - 1]`)")
|
|
|
|
.SetDefault(std::vector<int>{});
|
|
|
|
|
|
|
|
AddComment(R"DOC(
|
|
|
|
Fully Connected Operator, known as Fully Connected Layer or Inner Product Layer
|
|
|
|
in Convolutional Neural Networks. Neurons in a fully connected layer have
|
|
|
|
full connections to all activations in the previous layer.
|
|
|
|
It computes an inner product of a set of
|
|
|
|
learned weights with a matrix multiplication followed by a bias offset
|
|
|
|
(optionally).
|
|
|
|
|
|
|
|
Equation:
|
|
|
|
Out = Act(sum_n{X_i * W_i} + B)
|
|
|
|
|
|
|
|
where X_i is Tensor that will be reshaped to a 2-D matrix of size (M x K),
|
|
|
|
usually M is the minibatch size and K is the number of input features.
|
|
|
|
W_i is a 2-D matrix of size (K x N), where N means the number of neurons
|
|
|
|
in the fully connected layer. B is a 1-D vector of size N.
|
|
|
|
Thus, the output Out is a 2-D matrix of size (M x N).
|
|
|
|
Activation type can be set to `identity` (default), `sigmoid` or `softmax`.
|
|
|
|
)DOC");
|
|
|
|
}
|
|
|
|
};
|
|
|
|
|
|
|
|
} // namespace operators
|
|
|
|
} // namespace paddle
|
|
|
|
|
|
|
|
namespace ops = paddle::operators;
|
|
|
|
REGISTER_OP_WITHOUT_GRADIENT(fc, ops::FCOp, ops::FCOpMaker);
|