You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/prelu_op.cc

135 lines
4.9 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
8 years ago
#include "paddle/fluid/operators/prelu_op.h"
#include <string>
8 years ago
namespace paddle {
namespace operators {
8 years ago
class PReluOp : public framework::OperatorWithKernel {
8 years ago
public:
8 years ago
PReluOp(const std::string &type, const framework::VariableNameMap &inputs,
8 years ago
const framework::VariableNameMap &outputs,
const framework::AttributeMap &attrs)
: OperatorWithKernel(type, inputs, outputs, attrs) {}
void InferShape(framework::InferShapeContext *ctx) const override {
std::string mode = ctx->Attrs().Get<std::string>("mode");
auto x_dim = ctx->GetInputDim("X");
PADDLE_ENFORCE(ctx->HasInput("X"),
"Input(X) of PreluOp should not be null");
PADDLE_ENFORCE(ctx->HasInput("Alpha"),
"Input(Alpha) of PreluOp should not be null");
PADDLE_ENFORCE(ctx->HasOutput("Out"),
"Output(Out) of PreluOp should not be null");
if (mode == "all") {
PADDLE_ENFORCE(product(ctx->GetInputDim("Alpha")) == 1,
"For mode 'all', size of weight Alpha must be one.");
} else if (mode == "channel") {
PADDLE_ENFORCE(product(ctx->GetInputDim("Alpha")) == x_dim[1],
"For channel-wise mode, size of weight Alpha must be "
"equal to the number of channels, should be %d",
x_dim[1]);
} else if (mode == "element") {
PADDLE_ENFORCE(product(ctx->GetInputDim("Alpha")) == product(x_dim),
"For element-wise mode, size of weight Alpha must be "
"equal to the number of input, should be %d",
product(x_dim));
} else {
PADDLE_THROW("Unkown mode %s", mode);
}
ctx->ShareDim("X", /*->*/ "Out");
ctx->ShareLoD("X", /*->*/ "Out");
8 years ago
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
}
8 years ago
};
8 years ago
class PReluOpMaker : public framework::OpProtoAndCheckerMaker {
8 years ago
public:
void Make() override {
8 years ago
AddInput("X", "The input tensor of prelu operator.");
AddInput("Alpha", "The alpha weight of prelu operator.");
AddOutput("Out", "The output tensor of prelu operator.");
AddComment(R"DOC(
PRelu Operator.
8 years ago
The equation is:
$$
f(x) =
\begin{cases}
\alpha * x, \quad \text{if} \ x < 0 \\
x, \qquad \text{if} \ x >= 0
\end{cases}
$$
The input `X` can carry the LoD (Level of Details) information,
or not. And the output shares the LoD information with input `X`.
There are modes:
all: all elements share same weight
channel: elements in a channel share same weight
element: each element has a weight
8 years ago
)DOC");
AddAttr<std::string>("mode", "The mode for inputs to share weights.")
.SetDefault("all");
8 years ago
}
};
// The operator to calculate gradients of a prelu operator.
8 years ago
class PReluGradOp : public framework::OperatorWithKernel {
8 years ago
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("X"), "Input(X) must not be null.");
PADDLE_ENFORCE(ctx->HasInput(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_grad_name = framework::GradVarName("X");
auto alpha_grad_name = framework::GradVarName("Alpha");
if (ctx->HasOutput(x_grad_name)) {
ctx->SetOutputDim(x_grad_name, ctx->GetInputDim("X"));
}
if (ctx->HasOutput(alpha_grad_name)) {
ctx->SetOutputDim(alpha_grad_name, ctx->GetInputDim("Alpha"));
}
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
return framework::OpKernelType(
OperatorWithKernel::IndicateVarDataType(ctx, "X"),
ctx.device_context());
8 years ago
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OPERATOR(prelu, ops::PReluOp, ops::PReluOpMaker,
paddle::framework::DefaultGradOpDescMaker<true>);
REGISTER_OPERATOR(prelu_grad, ops::PReluGradOp);
REGISTER_OP_CPU_KERNEL(
prelu, ops::PReluKernel<paddle::platform::CPUDeviceContext, float>);
REGISTER_OP_CPU_KERNEL(
prelu_grad,
ops::PReluGradKernel<paddle::platform::CPUDeviceContext, float>);