You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/crop_op.cc

187 lines
6.4 KiB

8 years ago
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/operators/crop_op.h"
#include <boost/lexical_cast.hpp>
8 years ago
namespace paddle {
namespace operators {
using framework::Tensor;
using framework::LoDTensor;
8 years ago
class CropOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"),
"Input(X) of CropOp should not be null.");
PADDLE_ENFORCE_NOT_NULL(ctx.OutputVar("Out"),
"Output(Out) of CropOp should not be null.");
auto x_dim = ctx.Input<LoDTensor>("X")->dims();
auto Y = ctx.Input<LoDTensor>("Y");
8 years ago
if (Y == nullptr) {
auto shape = Attr<std::vector<int>>("shape");
8 years ago
PADDLE_ENFORCE_EQ(
int64_t(shape.size()), x_dim.size(),
8 years ago
"Shape size should be equal to dimention size of input tensor.");
std::vector<int64_t> tensor_shape(shape.size());
for (size_t i = 0; i < shape.size(); ++i) {
tensor_shape[i] = static_cast<int64_t>(shape[i]);
}
ctx.Output<LoDTensor>("Out")->Resize(framework::make_ddim(tensor_shape));
8 years ago
} else {
PADDLE_ENFORCE_EQ(framework::arity(x_dim), framework::arity(Y->dims()),
"Tensor rank of both CropOp's "
"inputs must be same.");
ctx.Output<LoDTensor>("Out")->Resize(Y->dims());
8 years ago
}
}
};
class CropOpMaker : public framework::OpProtoAndCheckerMaker {
public:
CropOpMaker(framework::OpProto *proto, framework::OpAttrChecker *op_checker)
: OpProtoAndCheckerMaker(proto, op_checker) {
AddInput("X",
"The input of pad op. "
"The input should be a k-D tensor(k > 0 and k < 7)");
AddInput("Y",
"The input used as reference for cropping"
" with the same dimension as X. ");
AddOutput("Out",
"The output of crop op "
"with the same dimension as X.");
AddAttr<std::vector<int>>("offsets",
"A list<int> describing offsets to be cropped."
"The size of offsets list should be as same as "
"dimension size of input X.");
AddAttr<std::vector<int>>("shape",
"A list<int> describing the shape of output."
"The size of shape list should be as same as "
"dimension size of input X.")
.SetDefault(std::vector<int>());
8 years ago
AddComment(R"DOC(
Crop Operator.
Crop input into output, as specified by offsets and shape.
There are two ways to set shape:
1. referenc input: crop input X as shape as reference input.
The dimension of reference input should
be as same as input X.
2. shape list: crop input X by shape described by a list<int>.
The size of shape list should be as same as
dimension size of input X.
The input should be a k-D tensor(k > 0 and k < 7). As an example:
Given:
X = [[0, 1, 2, 0, 0]
[0, 3, 4, 0, 0]
[0, 0, 0, 0, 0]]
and
offsets = [0, 1]
and
shape = [2, 2]
then we get
Out = [[1, 2],
[3, 4]]
8 years ago
)DOC");
}
};
class CropOpGrad : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
protected:
void InferShape(const framework::InferShapeContext &ctx) const override {
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar("X"), "Input(X) should not be null");
PADDLE_ENFORCE_NOT_NULL(ctx.InputVar(framework::GradVarName("Out")),
"Input(Out@GRAD) should not be null");
auto x_dims = ctx.Input<LoDTensor>("X")->dims();
auto *x_grad = ctx.Output<LoDTensor>(framework::GradVarName("X"));
if (x_grad != nullptr) {
x_grad->Resize(x_dims);
}
8 years ago
}
};
int64_t transIndex(std::vector<int64_t> out_shape, std::vector<int64_t> x_shape,
std::vector<std::pair<int, int>> crop_rules, size_t index) {
int64_t dim_size = out_shape.size();
std::vector<int64_t> pos(dim_size);
for (int64_t i = out_shape.size() - 1; i >= 0; --i) {
pos[i] = (index % out_shape[i]) + crop_rules[i].first;
index = index / out_shape[i];
}
size_t result = pos[0];
for (size_t i = 1; i < x_shape.size(); ++i) {
result = result * x_shape[i] + pos[i];
}
return result;
}
template <typename T>
class CropCPUKernel : public framework::OpKernel {
public:
void Compute(const framework::ExecutionContext &context) const override {
auto *x = context.Input<Tensor>("X");
auto *out = context.Output<Tensor>("Out");
auto x_data = x->data<T>();
T *out_data = out->mutable_data<T>(context.GetPlace());
auto x_dims = x->dims();
auto out_dims = out->dims();
int64_t out_count = out->numel();
std::vector<int64_t> x_shape = framework::vectorize(x_dims);
std::vector<int64_t> out_shape = framework::vectorize(out_dims);
auto offsets = context.Attr<std::vector<int>>("offsets");
PADDLE_ENFORCE_EQ(
x_dims.size(), offsets.size(),
"Offsets size should be equal to dimension size of input tensor.");
std::vector<std::pair<int, int>> crop_rules(x_dims.size());
for (size_t i = 0; i < crop_rules.size(); ++i) {
crop_rules[i].first = offsets[i];
crop_rules[i].second = x_dims[i] - out_dims[i] - offsets[i];
}
for (int64_t i = 0; i < out_count; ++i) {
out_data[i] = x_data[transIndex(out_shape, x_shape, crop_rules, i)];
}
}
};
8 years ago
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP(crop, ops::CropOp, ops::CropOpMaker, crop_grad, ops::CropOpGrad);
REGISTER_OP_CPU_KERNEL(crop, ops::CropCPUKernel<float>);
8 years ago
REGISTER_OP_CPU_KERNEL(crop_grad,
ops::CropGradKernel<paddle::platform::CPUPlace, float>);