You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
246 lines
8.5 KiB
246 lines
8.5 KiB
7 years ago
|
// Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||
|
//
|
||
|
// Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
// you may not use this file except in compliance with the License.
|
||
|
// You may obtain a copy of the License at
|
||
|
//
|
||
|
// http://www.apache.org/licenses/LICENSE-2.0
|
||
|
//
|
||
|
// Unless required by applicable law or agreed to in writing, software
|
||
|
// distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
// WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
// See the License for the specific language governing permissions and
|
||
|
// limitations under the License.
|
||
7 years ago
|
|
||
7 years ago
|
#include "paddle/fluid/inference/analysis/analyzer.h"
|
||
|
#include <gtest/gtest.h>
|
||
7 years ago
|
#include "paddle/fluid/framework/ir/fuse_pass_base.h"
|
||
7 years ago
|
#include "paddle/fluid/inference/analysis/ut_helper.h"
|
||
7 years ago
|
#include "paddle/fluid/inference/api/analysis_predictor.h"
|
||
7 years ago
|
#include "paddle/fluid/inference/api/helper.h"
|
||
7 years ago
|
#include "paddle/fluid/inference/api/paddle_inference_pass.h"
|
||
7 years ago
|
#include "paddle/fluid/platform/profiler.h"
|
||
7 years ago
|
|
||
7 years ago
|
DEFINE_string(infer_model, "", "model path for LAC");
|
||
|
DEFINE_string(infer_data, "", "data file for LAC");
|
||
|
DEFINE_int32(batch_size, 1, "batch size.");
|
||
|
DEFINE_int32(burning, 0, "Burning before repeat.");
|
||
|
DEFINE_int32(repeat, 1, "Running the inference program repeat times.");
|
||
|
DEFINE_bool(test_all_data, false, "Test the all dataset in data file.");
|
||
7 years ago
|
|
||
7 years ago
|
namespace paddle {
|
||
|
namespace inference {
|
||
|
namespace analysis {
|
||
7 years ago
|
|
||
7 years ago
|
struct DataRecord {
|
||
|
std::vector<int64_t> data;
|
||
|
std::vector<size_t> lod;
|
||
|
// for dataset and nextbatch
|
||
|
size_t batch_iter{0};
|
||
|
std::vector<std::vector<size_t>> batched_lods;
|
||
|
std::vector<std::vector<int64_t>> batched_datas;
|
||
|
std::vector<std::vector<int64_t>> datasets;
|
||
|
DataRecord() = default;
|
||
|
explicit DataRecord(const std::string &path, int batch_size = 1) {
|
||
|
Load(path);
|
||
|
Prepare(batch_size);
|
||
|
batch_iter = 0;
|
||
|
}
|
||
|
void Load(const std::string &path) {
|
||
|
std::ifstream file(path);
|
||
|
std::string line;
|
||
|
int num_lines = 0;
|
||
|
datasets.resize(0);
|
||
|
while (std::getline(file, line)) {
|
||
|
num_lines++;
|
||
|
std::vector<std::string> data;
|
||
|
split(line, ';', &data);
|
||
|
std::vector<int64_t> words_ids;
|
||
|
split_to_int64(data[1], ' ', &words_ids);
|
||
|
datasets.emplace_back(words_ids);
|
||
|
}
|
||
|
}
|
||
|
void Prepare(int bs) {
|
||
|
if (bs == 1) {
|
||
|
batched_datas = datasets;
|
||
|
for (auto one_sentence : datasets) {
|
||
|
batched_lods.push_back({0, one_sentence.size()});
|
||
|
}
|
||
|
} else {
|
||
|
std::vector<int64_t> one_batch;
|
||
|
std::vector<size_t> lod{0};
|
||
|
int bs_id = 0;
|
||
|
for (auto one_sentence : datasets) {
|
||
|
bs_id++;
|
||
|
one_batch.insert(one_batch.end(), one_sentence.begin(),
|
||
|
one_sentence.end());
|
||
|
lod.push_back(lod.back() + one_sentence.size());
|
||
|
if (bs_id == bs) {
|
||
|
bs_id = 0;
|
||
|
batched_datas.push_back(one_batch);
|
||
|
batched_lods.push_back(lod);
|
||
|
one_batch.clear();
|
||
|
one_batch.resize(0);
|
||
|
lod.clear();
|
||
|
lod.resize(0);
|
||
|
lod.push_back(0);
|
||
|
}
|
||
|
}
|
||
|
if (one_batch.size() != 0) {
|
||
|
batched_datas.push_back(one_batch);
|
||
|
batched_lods.push_back(lod);
|
||
|
}
|
||
|
}
|
||
|
}
|
||
|
DataRecord NextBatch() {
|
||
|
DataRecord data;
|
||
|
data.data = batched_datas[batch_iter];
|
||
|
data.lod = batched_lods[batch_iter];
|
||
|
batch_iter++;
|
||
|
if (batch_iter >= batched_datas.size()) {
|
||
|
batch_iter = 0;
|
||
|
}
|
||
|
return data;
|
||
|
}
|
||
|
};
|
||
7 years ago
|
|
||
7 years ago
|
void GetOneBatch(std::vector<PaddleTensor> *input_slots, DataRecord *data,
|
||
|
int batch_size) {
|
||
|
auto one_batch = data->NextBatch();
|
||
|
PaddleTensor input_tensor;
|
||
|
input_tensor.name = "word";
|
||
|
input_tensor.shape.assign({static_cast<int>(one_batch.data.size()), 1});
|
||
|
input_tensor.lod.assign({one_batch.lod});
|
||
|
input_tensor.dtype = PaddleDType::INT64;
|
||
|
TensorAssignData<int64_t>(&input_tensor, {one_batch.data});
|
||
|
PADDLE_ENFORCE_EQ(batch_size, static_cast<int>(one_batch.lod.size() - 1));
|
||
|
input_slots->assign({input_tensor});
|
||
|
}
|
||
7 years ago
|
|
||
7 years ago
|
const int64_t lac_ref_data[] = {24, 25, 25, 25, 38, 30, 31, 14, 15, 44, 24, 25,
|
||
|
25, 25, 25, 25, 44, 24, 25, 25, 25, 36, 42, 43,
|
||
|
44, 14, 15, 44, 14, 15, 44, 14, 15, 44, 38, 39,
|
||
|
14, 15, 44, 22, 23, 23, 23, 23, 23, 23, 23};
|
||
7 years ago
|
|
||
7 years ago
|
void TestLACPrediction(const std::string &model_path,
|
||
|
const std::string &data_file, const int batch_size,
|
||
7 years ago
|
const int repeat, bool test_all_data,
|
||
|
bool use_analysis = false) {
|
||
7 years ago
|
NativeConfig config;
|
||
|
config.model_dir = model_path;
|
||
|
config.use_gpu = false;
|
||
|
config.device = 0;
|
||
|
config.specify_input_name = true;
|
||
7 years ago
|
std::vector<PaddleTensor> input_slots, outputs_slots;
|
||
7 years ago
|
DataRecord data(data_file, batch_size);
|
||
|
GetOneBatch(&input_slots, &data, batch_size);
|
||
7 years ago
|
std::unique_ptr<PaddlePredictor> predictor;
|
||
|
if (use_analysis) {
|
||
7 years ago
|
AnalysisConfig cfg;
|
||
|
cfg.model_dir = model_path;
|
||
|
cfg.use_gpu = false;
|
||
|
cfg.device = 0;
|
||
|
cfg.specify_input_name = true;
|
||
|
cfg.enable_ir_optim = true;
|
||
7 years ago
|
predictor =
|
||
7 years ago
|
CreatePaddlePredictor<AnalysisConfig, PaddleEngineKind::kAnalysis>(cfg);
|
||
7 years ago
|
} else {
|
||
|
predictor =
|
||
|
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
|
||
|
}
|
||
7 years ago
|
for (int i = 0; i < FLAGS_burning; i++) {
|
||
|
predictor->Run(input_slots, &outputs_slots);
|
||
|
}
|
||
|
Timer timer;
|
||
7 years ago
|
if (test_all_data) {
|
||
|
double sum = 0;
|
||
7 years ago
|
LOG(INFO) << "Total number of samples: " << data.datasets.size();
|
||
7 years ago
|
for (int i = 0; i < repeat; i++) {
|
||
|
for (size_t bid = 0; bid < data.batched_datas.size(); ++bid) {
|
||
|
GetOneBatch(&input_slots, &data, batch_size);
|
||
|
timer.tic();
|
||
|
predictor->Run(input_slots, &outputs_slots);
|
||
|
sum += timer.toc();
|
||
|
}
|
||
|
}
|
||
7 years ago
|
PrintTime(batch_size, repeat, 1, 0, sum / repeat);
|
||
|
LOG(INFO) << "Average latency of each sample: "
|
||
|
<< sum / repeat / data.datasets.size() << " ms";
|
||
7 years ago
|
return;
|
||
|
}
|
||
7 years ago
|
timer.tic();
|
||
|
for (int i = 0; i < repeat; i++) {
|
||
|
predictor->Run(input_slots, &outputs_slots);
|
||
|
}
|
||
7 years ago
|
PrintTime(batch_size, repeat, 1, 0, timer.toc() / repeat);
|
||
7 years ago
|
|
||
|
// check result
|
||
7 years ago
|
EXPECT_EQ(outputs_slots.size(), 1UL);
|
||
|
auto &out = outputs_slots[0];
|
||
|
size_t size = std::accumulate(out.shape.begin(), out.shape.end(), 1,
|
||
|
[](int a, int b) { return a * b; });
|
||
|
size_t batch1_size = sizeof(lac_ref_data) / sizeof(int64_t);
|
||
|
PADDLE_ENFORCE_GT(size, 0);
|
||
|
EXPECT_GE(size, batch1_size);
|
||
|
int64_t *pdata = static_cast<int64_t *>(out.data.data());
|
||
|
for (size_t i = 0; i < batch1_size; ++i) {
|
||
|
EXPECT_EQ(pdata[i], lac_ref_data[i]);
|
||
|
}
|
||
7 years ago
|
|
||
|
if (use_analysis) {
|
||
7 years ago
|
// run once for comparion as reference
|
||
|
auto ref_predictor =
|
||
|
CreatePaddlePredictor<NativeConfig, PaddleEngineKind::kNative>(config);
|
||
7 years ago
|
std::vector<PaddleTensor> ref_outputs_slots;
|
||
7 years ago
|
ref_predictor->Run(input_slots, &ref_outputs_slots);
|
||
7 years ago
|
EXPECT_EQ(ref_outputs_slots.size(), outputs_slots.size());
|
||
|
auto &ref_out = ref_outputs_slots[0];
|
||
|
size_t ref_size =
|
||
|
std::accumulate(ref_out.shape.begin(), ref_out.shape.end(), 1,
|
||
|
[](int a, int b) { return a * b; });
|
||
|
EXPECT_EQ(size, ref_size);
|
||
|
int64_t *pdata_ref = static_cast<int64_t *>(ref_out.data.data());
|
||
|
for (size_t i = 0; i < size; ++i) {
|
||
|
EXPECT_EQ(pdata_ref[i], pdata[i]);
|
||
|
}
|
||
7 years ago
|
|
||
|
AnalysisPredictor *analysis_predictor =
|
||
|
dynamic_cast<AnalysisPredictor *>(predictor.get());
|
||
|
auto &fuse_statis = analysis_predictor->analysis_argument()
|
||
|
.Get<std::unordered_map<std::string, int>>(
|
||
|
framework::ir::kFuseStatisAttr);
|
||
|
for (auto &item : fuse_statis) {
|
||
|
LOG(INFO) << "fused " << item.first << " " << item.second;
|
||
|
}
|
||
|
int num_ops = 0;
|
||
|
for (auto &node :
|
||
|
analysis_predictor->analysis_argument().main_dfg->nodes.nodes()) {
|
||
|
if (node->IsFunction()) {
|
||
|
++num_ops;
|
||
|
}
|
||
|
}
|
||
|
LOG(INFO) << "has num ops: " << num_ops;
|
||
|
ASSERT_TRUE(fuse_statis.count("fc_fuse"));
|
||
7 years ago
|
ASSERT_TRUE(fuse_statis.count("fc_gru_fuse"));
|
||
|
EXPECT_EQ(fuse_statis.at("fc_fuse"), 1);
|
||
|
EXPECT_EQ(fuse_statis.at("fc_gru_fuse"), 4);
|
||
|
EXPECT_EQ(num_ops, 11);
|
||
7 years ago
|
}
|
||
7 years ago
|
}
|
||
7 years ago
|
|
||
7 years ago
|
TEST(Analyzer_LAC, native) {
|
||
|
LOG(INFO) << "LAC with native";
|
||
|
TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
|
||
|
FLAGS_repeat, FLAGS_test_all_data);
|
||
|
}
|
||
7 years ago
|
|
||
|
TEST(Analyzer_LAC, analysis) {
|
||
|
LOG(INFO) << "LAC with analysis";
|
||
|
TestLACPrediction(FLAGS_infer_model, FLAGS_infer_data, FLAGS_batch_size,
|
||
|
FLAGS_repeat, FLAGS_test_all_data, true);
|
||
|
}
|
||
|
|
||
7 years ago
|
} // namespace analysis
|
||
|
} // namespace inference
|
||
|
} // namespace paddle
|