You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
100 lines
2.8 KiB
100 lines
2.8 KiB
7 years ago
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||
|
#
|
||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
|
#
|
||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
|
#
|
||
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
|
|
||
|
import unittest
|
||
|
import numpy as np
|
||
|
from op_test import OpTest
|
||
|
|
||
|
|
||
|
def fully_connected_naive(input, weights, bias_data=None):
|
||
|
in_n, in_c, in_h, in_w = input.shape
|
||
|
w_h, w_c = weights.shape
|
||
|
|
||
|
x_data = np.reshape(input, [in_n, in_c * in_h * in_w])
|
||
|
w_data = np.transpose(np.reshape(weights, (w_c, in_c * in_h * in_w)))
|
||
|
result = None
|
||
|
|
||
|
if not bias_data:
|
||
|
result = np.dot(x_data, w_data)
|
||
|
else:
|
||
|
result = np.dot(x_data, w_data) + bias_data
|
||
|
|
||
|
return result
|
||
|
|
||
|
|
||
|
class MatrixGenerate:
|
||
|
def __init__(self, mb, ic, oc, h, w):
|
||
|
self.input = np.random.random((mb, ic, h, w)).astype("float32")
|
||
|
self.weights = np.random.random((ic * h * w, oc)).astype("float32")
|
||
|
|
||
|
|
||
|
class TestFCMKLDNNOp(OpTest):
|
||
|
def setUp(self):
|
||
|
self.op_type = "fc"
|
||
|
self.use_mkldnn = True
|
||
|
self.with_bias = True
|
||
|
self.matrix = MatrixGenerate(1, 10, 15, 3, 3)
|
||
|
|
||
|
self.inputs = {'Input': self.matrix.input, 'W': self.matrix.weights}
|
||
|
|
||
|
self.attrs = {
|
||
|
'use_mkldnn': self.use_mkldnn,
|
||
|
'with_bias': self.with_bias
|
||
|
}
|
||
|
|
||
|
self.outputs = {
|
||
|
'Out': fully_connected_naive(self.matrix.input, self.matrix.weights)
|
||
|
}
|
||
|
|
||
|
def test_check_output(self):
|
||
|
self.check_output()
|
||
|
|
||
|
def test_check_grad_normal(self):
|
||
|
self.check_grad(set(['Input', 'W']), 'Out', max_relative_error=0.9)
|
||
|
|
||
|
def test_check_grad_no_weight(self):
|
||
|
self.check_grad(
|
||
|
['Input'], 'Out', max_relative_error=0.5, no_grad_set=set('W'))
|
||
|
|
||
|
|
||
|
class TestFCMKLDNNOp1(TestFCMKLDNNOp):
|
||
|
def init_op_type(self):
|
||
|
self.matrix = MatrixGenerate(2, 15, 48, 2, 2)
|
||
|
|
||
|
|
||
|
class TestFCMKLDNNOp2(TestFCMKLDNNOp):
|
||
|
def init_op_type(self):
|
||
|
self.matrix = MatrixGenerate(2, 32, 40, 1, 1)
|
||
|
|
||
|
|
||
|
class TestFCMKLDNNOp3(TestFCMKLDNNOp):
|
||
|
def init_op_type(self):
|
||
|
self.matrix = MatrixGenerate(2, 2, 4, 1, 1)
|
||
|
|
||
|
|
||
|
class TestFCMKLDNNOp4(TestFCMKLDNNOp):
|
||
|
def init_op_type(self):
|
||
|
self.with_bias = False
|
||
|
self.matrix = MatrixGenerate(2, 32, 48, 2, 2)
|
||
|
|
||
|
|
||
|
class TestFCMKLDNNOp4(TestFCMKLDNNOp):
|
||
|
def init_op_type(self):
|
||
|
self.with_bias = False
|
||
|
self.matrix = MatrixGenerate(2, 32, 1000, 6, 6)
|
||
|
|
||
|
|
||
|
if __name__ == "__main__":
|
||
|
unittest.main()
|