|
|
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
from __future__ import print_function
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
import paddle.fluid as fluid
|
|
|
|
import paddle.fluid.core as core
|
|
|
|
import paddle.fluid.framework as framework
|
|
|
|
import paddle.fluid.layers as layers
|
|
|
|
import contextlib
|
|
|
|
import math
|
|
|
|
import sys
|
|
|
|
import unittest
|
|
|
|
from paddle.fluid.executor import Executor
|
|
|
|
|
|
|
|
dict_size = 30000
|
|
|
|
source_dict_dim = target_dict_dim = dict_size
|
|
|
|
src_dict, trg_dict = paddle.dataset.wmt14.get_dict(dict_size)
|
|
|
|
hidden_dim = 32
|
|
|
|
embedding_dim = 16
|
|
|
|
batch_size = 10
|
|
|
|
max_length = 50
|
|
|
|
topk_size = 50
|
|
|
|
encoder_size = decoder_size = hidden_dim
|
|
|
|
IS_SPARSE = True
|
|
|
|
USE_PEEPHOLES = False
|
|
|
|
|
|
|
|
|
|
|
|
def bi_lstm_encoder(input_seq, hidden_size):
|
|
|
|
input_forward_proj = fluid.layers.fc(input=input_seq,
|
|
|
|
size=hidden_size * 4,
|
|
|
|
bias_attr=True)
|
|
|
|
forward, _ = fluid.layers.dynamic_lstm(
|
|
|
|
input=input_forward_proj,
|
|
|
|
size=hidden_size * 4,
|
|
|
|
use_peepholes=USE_PEEPHOLES)
|
|
|
|
input_backward_proj = fluid.layers.fc(input=input_seq,
|
|
|
|
size=hidden_size * 4,
|
|
|
|
bias_attr=True)
|
|
|
|
backward, _ = fluid.layers.dynamic_lstm(
|
|
|
|
input=input_backward_proj,
|
|
|
|
size=hidden_size * 4,
|
|
|
|
is_reverse=True,
|
|
|
|
use_peepholes=USE_PEEPHOLES)
|
|
|
|
|
|
|
|
forward_last = fluid.layers.sequence_last_step(input=forward)
|
|
|
|
backward_first = fluid.layers.sequence_first_step(input=backward)
|
|
|
|
|
|
|
|
return forward_last, backward_first
|
|
|
|
|
|
|
|
|
|
|
|
# FIXME(peterzhang2029): Replace this function with the lstm_unit_op.
|
|
|
|
def lstm_step(x_t, hidden_t_prev, cell_t_prev, size):
|
|
|
|
def linear(inputs):
|
|
|
|
return fluid.layers.fc(input=inputs, size=size, bias_attr=True)
|
|
|
|
|
|
|
|
forget_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
|
|
|
|
input_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
|
|
|
|
output_gate = fluid.layers.sigmoid(x=linear([hidden_t_prev, x_t]))
|
|
|
|
cell_tilde = fluid.layers.tanh(x=linear([hidden_t_prev, x_t]))
|
|
|
|
|
|
|
|
cell_t = fluid.layers.sums(input=[
|
|
|
|
fluid.layers.elementwise_mul(
|
|
|
|
x=forget_gate, y=cell_t_prev), fluid.layers.elementwise_mul(
|
|
|
|
x=input_gate, y=cell_tilde)
|
|
|
|
])
|
|
|
|
|
|
|
|
hidden_t = fluid.layers.elementwise_mul(
|
|
|
|
x=output_gate, y=fluid.layers.tanh(x=cell_t))
|
|
|
|
|
|
|
|
return hidden_t, cell_t
|
|
|
|
|
|
|
|
|
|
|
|
def lstm_decoder_without_attention(target_embedding, decoder_boot, context,
|
|
|
|
decoder_size):
|
|
|
|
rnn = fluid.layers.DynamicRNN()
|
|
|
|
|
|
|
|
cell_init = fluid.layers.fill_constant_batch_size_like(
|
|
|
|
input=decoder_boot,
|
|
|
|
value=0.0,
|
|
|
|
shape=[-1, decoder_size],
|
|
|
|
dtype='float32')
|
|
|
|
cell_init.stop_gradient = False
|
|
|
|
|
|
|
|
with rnn.block():
|
|
|
|
current_word = rnn.step_input(target_embedding)
|
|
|
|
context = rnn.static_input(context)
|
|
|
|
|
|
|
|
hidden_mem = rnn.memory(init=decoder_boot, need_reorder=True)
|
|
|
|
cell_mem = rnn.memory(init=cell_init)
|
|
|
|
decoder_inputs = fluid.layers.concat(
|
|
|
|
input=[context, current_word], axis=1)
|
|
|
|
h, c = lstm_step(decoder_inputs, hidden_mem, cell_mem, decoder_size)
|
|
|
|
rnn.update_memory(hidden_mem, h)
|
|
|
|
rnn.update_memory(cell_mem, c)
|
|
|
|
out = fluid.layers.fc(input=h,
|
|
|
|
size=target_dict_dim,
|
|
|
|
bias_attr=True,
|
|
|
|
act='softmax')
|
|
|
|
rnn.output(out)
|
|
|
|
return rnn()
|
|
|
|
|
|
|
|
|
|
|
|
def seq_to_seq_net():
|
|
|
|
"""Construct a seq2seq network."""
|
|
|
|
|
|
|
|
src_word_idx = fluid.layers.data(
|
|
|
|
name='source_sequence', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
|
|
|
|
src_embedding = fluid.layers.embedding(
|
|
|
|
input=src_word_idx,
|
|
|
|
size=[source_dict_dim, embedding_dim],
|
|
|
|
dtype='float32')
|
|
|
|
|
|
|
|
src_forward_last, src_backward_first = bi_lstm_encoder(
|
|
|
|
input_seq=src_embedding, hidden_size=encoder_size)
|
|
|
|
|
|
|
|
encoded_vector = fluid.layers.concat(
|
|
|
|
input=[src_forward_last, src_backward_first], axis=1)
|
|
|
|
|
|
|
|
decoder_boot = fluid.layers.fc(input=src_backward_first,
|
|
|
|
size=decoder_size,
|
|
|
|
bias_attr=False,
|
|
|
|
act='tanh')
|
|
|
|
|
|
|
|
trg_word_idx = fluid.layers.data(
|
|
|
|
name='target_sequence', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
|
|
|
|
trg_embedding = fluid.layers.embedding(
|
|
|
|
input=trg_word_idx,
|
|
|
|
size=[target_dict_dim, embedding_dim],
|
|
|
|
dtype='float32')
|
|
|
|
|
|
|
|
prediction = lstm_decoder_without_attention(trg_embedding, decoder_boot,
|
|
|
|
encoded_vector, decoder_size)
|
|
|
|
label = fluid.layers.data(
|
|
|
|
name='label_sequence', shape=[1], dtype='int64', lod_level=1)
|
|
|
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
|
|
|
avg_cost = fluid.layers.mean(cost)
|
|
|
|
|
|
|
|
return avg_cost, prediction
|
|
|
|
|
|
|
|
|
|
|
|
def train(use_cuda, save_dirname=None):
|
|
|
|
[avg_cost, prediction] = seq_to_seq_net()
|
|
|
|
|
|
|
|
optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
|
|
|
|
optimizer.minimize(avg_cost)
|
|
|
|
|
|
|
|
train_data = paddle.batch(
|
|
|
|
paddle.reader.shuffle(
|
|
|
|
paddle.dataset.wmt14.train(dict_size), buf_size=1000),
|
|
|
|
batch_size=batch_size)
|
|
|
|
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
|
|
exe = Executor(place)
|
|
|
|
exe.run(framework.default_startup_program())
|
|
|
|
|
|
|
|
feed_order = ['source_sequence', 'target_sequence', 'label_sequence']
|
|
|
|
feed_list = [
|
|
|
|
framework.default_main_program().global_block().var(var_name)
|
|
|
|
for var_name in feed_order
|
|
|
|
]
|
|
|
|
feeder = fluid.DataFeeder(feed_list, place)
|
|
|
|
|
|
|
|
batch_id = 0
|
|
|
|
for pass_id in range(2):
|
|
|
|
for data in train_data():
|
|
|
|
outs = exe.run(framework.default_main_program(),
|
|
|
|
feed=feeder.feed(data),
|
|
|
|
fetch_list=[avg_cost])
|
|
|
|
|
|
|
|
avg_cost_val = np.array(outs[0])
|
|
|
|
print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
|
|
|
|
" avg_cost=" + str(avg_cost_val))
|
|
|
|
if math.isnan(float(avg_cost_val[0])):
|
|
|
|
sys.exit("got NaN loss, training failed.")
|
|
|
|
if batch_id > 3:
|
|
|
|
if save_dirname is not None:
|
|
|
|
fluid.io.save_inference_model(
|
|
|
|
save_dirname, ['source_sequence',
|
|
|
|
'target_sequence'], [prediction], exe)
|
|
|
|
return
|
|
|
|
|
|
|
|
batch_id += 1
|
|
|
|
|
|
|
|
|
|
|
|
def infer(use_cuda, save_dirname=None):
|
|
|
|
if save_dirname is None:
|
|
|
|
return
|
|
|
|
|
|
|
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
|
|
|
exe = fluid.Executor(place)
|
|
|
|
|
|
|
|
inference_scope = fluid.core.Scope()
|
|
|
|
with fluid.scope_guard(inference_scope):
|
|
|
|
# Use fluid.io.load_inference_model to obtain the inference program desc,
|
|
|
|
# the feed_target_names (the names of variables that will be feeded
|
|
|
|
# data using feed operators), and the fetch_targets (variables that
|
|
|
|
# we want to obtain data from using fetch operators).
|
|
|
|
[inference_program, feed_target_names,
|
|
|
|
fetch_targets] = fluid.io.load_inference_model(save_dirname, exe)
|
|
|
|
|
|
|
|
# Setup input by creating LoDTensor to represent sequence of words.
|
|
|
|
# Here each word is the basic element of the LoDTensor and the shape of
|
|
|
|
# each word (base_shape) should be [1] since it is simply an index to
|
|
|
|
# look up for the corresponding word vector.
|
|
|
|
# Suppose the recursive_sequence_lengths info is set to [[4, 6]],
|
|
|
|
# which has only one level of detail. Then the created LoDTensor will have only
|
|
|
|
# one higher level structure (sequence of words, or sentence) than the basic
|
|
|
|
# element (word). Hence the LoDTensor will hold data for two sentences of
|
|
|
|
# length 4 and 6, respectively.
|
|
|
|
# Note that recursive_sequence_lengths should be a list of lists.
|
|
|
|
recursive_seq_lens = [[4, 6]]
|
|
|
|
base_shape = [1]
|
|
|
|
# The range of random integers is [low, high]
|
|
|
|
word_data = fluid.create_random_int_lodtensor(
|
|
|
|
recursive_seq_lens, base_shape, place, low=0, high=1)
|
|
|
|
trg_word = fluid.create_random_int_lodtensor(
|
|
|
|
recursive_seq_lens, base_shape, place, low=0, high=1)
|
|
|
|
|
|
|
|
# Construct feed as a dictionary of {feed_target_name: feed_target_data}
|
|
|
|
# and results will contain a list of data corresponding to fetch_targets.
|
|
|
|
assert feed_target_names[0] == 'source_sequence'
|
|
|
|
assert feed_target_names[1] == 'target_sequence'
|
|
|
|
results = exe.run(inference_program,
|
|
|
|
feed={
|
|
|
|
feed_target_names[0]: word_data,
|
|
|
|
feed_target_names[1]: trg_word,
|
|
|
|
},
|
|
|
|
fetch_list=fetch_targets,
|
|
|
|
return_numpy=False)
|
|
|
|
print(results[0].recursive_sequence_lengths())
|
|
|
|
np_data = np.array(results[0])
|
|
|
|
print("Inference shape: ", np_data.shape)
|
|
|
|
print("Inference results: ", np_data)
|
|
|
|
|
|
|
|
|
|
|
|
def main(use_cuda):
|
|
|
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
|
|
|
return
|
|
|
|
|
|
|
|
# Directory for saving the trained model
|
|
|
|
save_dirname = "rnn_encoder_decoder.inference.model"
|
|
|
|
|
|
|
|
train(use_cuda, save_dirname)
|
|
|
|
infer(use_cuda, save_dirname)
|
|
|
|
|
|
|
|
|
|
|
|
class TestRnnEncoderDecoder(unittest.TestCase):
|
|
|
|
def test_cuda(self):
|
|
|
|
with self.scope_prog_guard():
|
|
|
|
main(use_cuda=True)
|
|
|
|
|
|
|
|
def test_cpu(self):
|
|
|
|
with self.scope_prog_guard():
|
|
|
|
main(use_cuda=False)
|
|
|
|
|
|
|
|
@contextlib.contextmanager
|
|
|
|
def scope_prog_guard(self):
|
|
|
|
prog = fluid.Program()
|
|
|
|
startup_prog = fluid.Program()
|
|
|
|
scope = fluid.core.Scope()
|
|
|
|
with fluid.scope_guard(scope):
|
|
|
|
with fluid.program_guard(prog, startup_prog):
|
|
|
|
yield
|
|
|
|
|
|
|
|
|
|
|
|
if __name__ == '__main__':
|
|
|
|
unittest.main()
|