|
|
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
|
|
|
|
|
|
|
Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
you may not use this file except in compliance with the License.
|
|
|
|
You may obtain a copy of the License at
|
|
|
|
|
|
|
|
http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
|
|
|
|
Unless required by applicable law or agreed to in writing, software
|
|
|
|
distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
See the License for the specific language governing permissions and
|
|
|
|
limitations under the License. */
|
|
|
|
|
|
|
|
#include "ContextProjectionOp.h"
|
|
|
|
#include "paddle/math/Matrix.h"
|
|
|
|
#include "paddle/math/Vector.h"
|
|
|
|
|
|
|
|
namespace paddle {
|
|
|
|
|
|
|
|
template <>
|
|
|
|
void ContextProjectionForward<DEVICE_TYPE_CPU>(CpuMatrix& out_mat,
|
|
|
|
const CpuMatrix& input_mat,
|
|
|
|
const CpuMatrix& weight_mat,
|
|
|
|
const CpuIVector& seq_vec,
|
|
|
|
size_t context_length,
|
|
|
|
int context_start,
|
|
|
|
size_t begin_pad) {
|
|
|
|
const int* starts = seq_vec.getData();
|
|
|
|
const size_t num_sequences = seq_vec.getSize() - 1;
|
|
|
|
for (size_t i = 0; i < num_sequences; ++i) {
|
|
|
|
for (size_t j = 0; j < context_length; ++j) {
|
|
|
|
int begin = starts[i] + context_start + j;
|
|
|
|
int end = starts[i + 1] + context_start + j;
|
|
|
|
int dst_begin = starts[i];
|
|
|
|
int dst_end = starts[i + 1];
|
|
|
|
if (begin < starts[i]) {
|
|
|
|
int64_t pad_size =
|
|
|
|
std::min(starts[i] - begin, starts[i + 1] - starts[i]);
|
|
|
|
MatrixPtr mat = out_mat.subMatrix(starts[i], pad_size);
|
|
|
|
if (weight_mat) {
|
|
|
|
MatrixPtr sub =
|
|
|
|
const_cast<CpuMatrix&>(weight_mat).subMatrix(j, pad_size);
|
|
|
|
mat->addAtOffset(*sub, j * input_mat.getWidth());
|
|
|
|
}
|
|
|
|
dst_begin = starts[i] + pad_size;
|
|
|
|
begin = starts[i];
|
|
|
|
}
|
|
|
|
if (end > starts[i + 1]) {
|
|
|
|
int64_t pad_size =
|
|
|
|
std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
|
|
|
|
MatrixPtr mat = out_mat.subMatrix(starts[i + 1] - pad_size, pad_size);
|
|
|
|
if (weight_mat) {
|
|
|
|
MatrixPtr sub =
|
|
|
|
const_cast<CpuMatrix&>(weight_mat)
|
|
|
|
.subMatrix(begin_pad + context_start + j - pad_size,
|
|
|
|
pad_size);
|
|
|
|
mat->addAtOffset(*sub, j * input_mat.getWidth());
|
|
|
|
}
|
|
|
|
dst_end = starts[i + 1] - pad_size;
|
|
|
|
end = starts[i + 1];
|
|
|
|
}
|
|
|
|
if (end <= begin) continue;
|
|
|
|
MatrixPtr src =
|
|
|
|
const_cast<CpuMatrix&>(input_mat).subMatrix(begin, end - begin);
|
|
|
|
MatrixPtr dst = out_mat.subMatrix(dst_begin, dst_end - dst_begin);
|
|
|
|
dst->addAtOffset(*src, j * input_mat.getWidth());
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \param inputs[0] input value.
|
|
|
|
* \param inputs[1] input weight.
|
|
|
|
* \param inputs[2] input sequence.
|
|
|
|
* \param outputs[0] output value.
|
|
|
|
*/
|
|
|
|
template <DeviceType Device>
|
|
|
|
class ContextProjectionForwardFunc : public FunctionBase {
|
|
|
|
public:
|
|
|
|
void init(const FuncConfig& config) override {
|
|
|
|
context_length_ = config.get<size_t>("context_length");
|
|
|
|
context_start_ = config.get<int>("context_start");
|
|
|
|
begin_pad_ = config.get<size_t>("begin_pad");
|
|
|
|
}
|
|
|
|
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
|
|
CHECK_EQ(3, inputs.size());
|
|
|
|
CHECK_EQ(1, outputs.size());
|
|
|
|
|
|
|
|
CHECK(outputs[0].data() && inputs[0].data() && inputs[2].data());
|
|
|
|
CHECK_EQ(outputs[0].shape().ndims(), (size_t)2);
|
|
|
|
CHECK_EQ(inputs[0].shape().ndims(), (size_t)2);
|
|
|
|
CHECK_EQ(inputs[1].shape().ndims(), (size_t)2);
|
|
|
|
CHECK_EQ(inputs[2].shape().ndims(), (size_t)1);
|
|
|
|
/// dim of output = dim of input * context_length
|
|
|
|
CHECK_EQ(outputs[0].shape()[1], inputs[0].shape()[1] * context_length_);
|
|
|
|
/// dim of input == dim of weight
|
|
|
|
CHECK_EQ(inputs[0].shape()[1], inputs[1].shape()[1]);
|
|
|
|
/// input and output has the same batch_size
|
|
|
|
CHECK_EQ(inputs[0].shape()[0], outputs[0].shape()[0]);
|
|
|
|
|
|
|
|
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
|
|
|
|
auto out_mat = outputs[0].matrix<Device>();
|
|
|
|
auto in_mat = inputs[0].matrix<Device>();
|
|
|
|
auto w_mat = !inputs[1].data()
|
|
|
|
? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
|
|
|
|
: inputs[1].matrix<Device>();
|
|
|
|
auto seq_vec = inputs[2].vector<int, Device>();
|
|
|
|
ContextProjectionForward<Device>(out_mat,
|
|
|
|
in_mat,
|
|
|
|
w_mat,
|
|
|
|
seq_vec,
|
|
|
|
context_length_,
|
|
|
|
context_start_,
|
|
|
|
begin_pad_);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
size_t context_length_;
|
|
|
|
int context_start_;
|
|
|
|
size_t begin_pad_;
|
|
|
|
};
|
|
|
|
|
|
|
|
template <>
|
|
|
|
void ContextProjectionBackward<DEVICE_TYPE_CPU>(CpuMatrix& out_grad_mat,
|
|
|
|
CpuMatrix& in_grad_mat,
|
|
|
|
CpuMatrix& w_grad_mat,
|
|
|
|
const CpuIVector& seq_vec,
|
|
|
|
size_t context_length,
|
|
|
|
int context_start,
|
|
|
|
size_t begin_pad,
|
|
|
|
bool is_padding,
|
|
|
|
size_t total_pad) {
|
|
|
|
size_t input_dim = in_grad_mat ? in_grad_mat.getWidth()
|
|
|
|
: w_grad_mat ? w_grad_mat.getWidth() : 0;
|
|
|
|
const int* starts = seq_vec.getData();
|
|
|
|
size_t num_sequences = seq_vec.getSize() - 1;
|
|
|
|
for (size_t i = 0; i < num_sequences; ++i) {
|
|
|
|
for (size_t j = 0; j < context_length; ++j) {
|
|
|
|
int begin = starts[i] + context_start + j;
|
|
|
|
int end = starts[i + 1] + context_start + j;
|
|
|
|
int dst_begin = starts[i];
|
|
|
|
int dst_end = starts[i + 1];
|
|
|
|
if (begin < starts[i]) {
|
|
|
|
int64_t pad_size =
|
|
|
|
std::min(starts[i] - begin, starts[i + 1] - starts[i]);
|
|
|
|
if (is_padding && w_grad_mat) {
|
|
|
|
MatrixPtr mat = out_grad_mat.subMatrix(starts[i], pad_size);
|
|
|
|
MatrixPtr sub = w_grad_mat.subMatrix(j, pad_size);
|
|
|
|
sub->addAtOffset(*mat, j * input_dim);
|
|
|
|
}
|
|
|
|
dst_begin = starts[i] + pad_size;
|
|
|
|
begin = starts[i];
|
|
|
|
}
|
|
|
|
if (end > starts[i + 1]) {
|
|
|
|
int64_t pad_size =
|
|
|
|
std::min(end - starts[i + 1], starts[i + 1] - starts[i]);
|
|
|
|
if (is_padding && w_grad_mat) {
|
|
|
|
MatrixPtr mat =
|
|
|
|
out_grad_mat.subMatrix(starts[i + 1] - pad_size, pad_size);
|
|
|
|
MatrixPtr sub = w_grad_mat.subMatrix(
|
|
|
|
begin_pad + context_start + j - pad_size, pad_size);
|
|
|
|
sub->addAtOffset(*mat, j * input_dim);
|
|
|
|
}
|
|
|
|
dst_end = starts[i + 1] - pad_size;
|
|
|
|
end = starts[i + 1];
|
|
|
|
}
|
|
|
|
if (end <= begin) continue;
|
|
|
|
if (!in_grad_mat) continue;
|
|
|
|
MatrixPtr src = in_grad_mat.subMatrix(begin, end - begin);
|
|
|
|
MatrixPtr dst = out_grad_mat.subMatrix(dst_begin, dst_end - dst_begin);
|
|
|
|
src->addAtOffset(*dst, j * input_dim);
|
|
|
|
}
|
|
|
|
}
|
|
|
|
}
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \param inputs[0] input grad.
|
|
|
|
* \param inputs[1] weight grad.
|
|
|
|
* \param inputs[2] input sequence.
|
|
|
|
* \param outputs[0] output value.
|
|
|
|
*/
|
|
|
|
template <DeviceType Device>
|
|
|
|
class ContextProjectionBackwardFunc : public FunctionBase {
|
|
|
|
public:
|
|
|
|
void init(const FuncConfig& config) override {
|
|
|
|
context_length_ = config.get<size_t>("context_length");
|
|
|
|
context_start_ = config.get<int>("context_start");
|
|
|
|
begin_pad_ = config.get<size_t>("begin_pad");
|
|
|
|
is_padding_ = config.get<bool>("is_padding");
|
|
|
|
total_pad_ = config.get<size_t>("total_pad");
|
|
|
|
}
|
|
|
|
|
|
|
|
void calc(const BufferArgs& inputs, const BufferArgs& outputs) override {
|
|
|
|
CHECK_EQ(3, inputs.size());
|
|
|
|
CHECK_EQ(1, outputs.size());
|
|
|
|
|
|
|
|
CHECK(outputs[0].data() && inputs[2].data());
|
|
|
|
CHECK_EQ(outputs[0].shape().ndims(), (size_t)2);
|
|
|
|
CHECK_EQ(inputs[0].shape().ndims(), (size_t)2);
|
|
|
|
CHECK_EQ(inputs[1].shape().ndims(), (size_t)2);
|
|
|
|
CHECK_EQ(inputs[2].shape().ndims(), (size_t)1);
|
|
|
|
|
|
|
|
/// dim of input == dim of weight
|
|
|
|
CHECK_EQ(inputs[0].shape()[1], inputs[1].shape()[1]);
|
|
|
|
/// input and output has the same batch_size
|
|
|
|
CHECK_EQ(inputs[0].shape()[0], outputs[0].shape()[0]);
|
|
|
|
/// dim of output = dim of input * context_length
|
|
|
|
CHECK_EQ(outputs[0].shape()[1], inputs[0].shape()[1] * context_length_);
|
|
|
|
|
|
|
|
CHECK_EQ(outputs[0].getArgType(), ADD_TO);
|
|
|
|
|
|
|
|
auto out_grad_mat = outputs[0].matrix<Device>();
|
|
|
|
auto in_grad_mat =
|
|
|
|
!inputs[0].data() ? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
|
|
|
|
: inputs[0].matrix<Device>();
|
|
|
|
auto w_grad_mat = !inputs[1].data()
|
|
|
|
? typename Tensor<real, Device>::Matrix(nullptr, 0, 0)
|
|
|
|
: inputs[1].matrix<Device>();
|
|
|
|
auto seq_vec = inputs[2].vector<int, Device>();
|
|
|
|
ContextProjectionBackward<Device>(out_grad_mat,
|
|
|
|
in_grad_mat,
|
|
|
|
w_grad_mat,
|
|
|
|
seq_vec,
|
|
|
|
context_length_,
|
|
|
|
context_start_,
|
|
|
|
begin_pad_,
|
|
|
|
is_padding_,
|
|
|
|
total_pad_);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
size_t context_length_;
|
|
|
|
int context_start_;
|
|
|
|
size_t begin_pad_;
|
|
|
|
bool is_padding_;
|
|
|
|
size_t total_pad_;
|
|
|
|
};
|
|
|
|
|
|
|
|
#if 0
|
|
|
|
/**
|
|
|
|
* \param inputs[0] input grad.
|
|
|
|
* \param inputs[1] input sequence.
|
|
|
|
* \param outputs[0] output grad.
|
|
|
|
*/
|
|
|
|
template <DeviceType Device>
|
|
|
|
class ContextProjectionBackwardDataFunc : public FunctionBase {
|
|
|
|
public:
|
|
|
|
void init(const FuncConfig& config) override {
|
|
|
|
context_length_ = config.get<size_t>("context_length");
|
|
|
|
context_start_ = config.get<int>("context_start");
|
|
|
|
}
|
|
|
|
|
|
|
|
void calc(const Arguments& inputs,
|
|
|
|
const Arguments& outputs,
|
|
|
|
const Arguments& inouts) override {
|
|
|
|
CHECK_EQ(2, static_cast<int>(inputs.size()));
|
|
|
|
CHECK_EQ(1, static_cast<int>(outputs.size()));
|
|
|
|
CHECK_EQ(0, static_cast<int>(inouts.size()));
|
|
|
|
CHECK(inputs[0].getData() && outputs[0].getData() && inputs[1].getData());
|
|
|
|
CHECK_EQ(static_cast<int>(outputs[0].dims_.size()), 2);
|
|
|
|
CHECK_EQ(static_cast<int>(inputs[0].dims_.size()), 2);
|
|
|
|
CHECK_EQ(static_cast<int>(inputs[1].dims_.size()), 1);
|
|
|
|
CHECK_EQ(outputs[0].dims_[1], inputs[0].dims_[1] * context_length_);
|
|
|
|
/// input and output has the same batch_size
|
|
|
|
CHECK_EQ(inputs[0].dims_[0], outputs[0].dims_[0]);
|
|
|
|
|
|
|
|
auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
|
|
|
|
outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
|
|
|
|
const auto in_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
|
|
|
|
inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
|
|
|
|
typename SequenceT<Device>::type seq_vec(
|
|
|
|
inputs[1].dims_[0], reinterpret_cast<int*>(inputs[1].getData()));
|
|
|
|
|
|
|
|
ContextProjectionBackwardData<Device>(out_grad_mat.get(),
|
|
|
|
in_grad_mat.get(),
|
|
|
|
seq_vec,
|
|
|
|
context_length_,
|
|
|
|
context_start_);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
size_t context_length_;
|
|
|
|
int context_start_;
|
|
|
|
};
|
|
|
|
|
|
|
|
/**
|
|
|
|
* \param inputs[0] weight grad.
|
|
|
|
* \param inputs[1] input sequence.
|
|
|
|
* \param outputs[0] output grad.
|
|
|
|
*/
|
|
|
|
template <DeviceType Device>
|
|
|
|
class ContextProjectionBackwardWeightFunc : public FunctionBase {
|
|
|
|
public:
|
|
|
|
void init(const FuncConfig& config) override {
|
|
|
|
context_length_ = config.get<size_t>("context_length");
|
|
|
|
context_start_ = config.get<int>("context_start");
|
|
|
|
begin_pad_ = config.get<size_t>("begin_pad");
|
|
|
|
total_pad_ = config.get<size_t>("total_pad");
|
|
|
|
}
|
|
|
|
|
|
|
|
void calc(const Arguments& inputs,
|
|
|
|
const Arguments& outputs,
|
|
|
|
const Arguments& inouts) override {
|
|
|
|
CHECK_EQ(2, static_cast<int>(inputs.size()));
|
|
|
|
CHECK_EQ(1, static_cast<int>(outputs.size()));
|
|
|
|
CHECK_EQ(0, static_cast<int>(inouts.size()));
|
|
|
|
|
|
|
|
CHECK(inputs[0].getData() && outputs[0].getData() && inputs[1].getData());
|
|
|
|
CHECK_EQ(static_cast<int>(outputs[0].dims_.size()), 2);
|
|
|
|
CHECK_EQ(static_cast<int>(inputs[0].dims_.size()), 2);
|
|
|
|
CHECK_EQ(static_cast<int>(inputs[1].dims_.size()), 1);
|
|
|
|
CHECK_EQ(outputs[0].dims_[1], inputs[0].dims_[1] * context_length_);
|
|
|
|
|
|
|
|
auto out_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
|
|
|
|
outputs[0].getData(), outputs[0].dims_[0], outputs[0].dims_[1]);
|
|
|
|
auto w_grad_mat = std::make_shared<typename MatrixT<Device>::type>(
|
|
|
|
inputs[0].getData(), inputs[0].dims_[0], inputs[0].dims_[1]);
|
|
|
|
typename SequenceT<Device>::type seq_vec(
|
|
|
|
inputs[1].dims_[0], reinterpret_cast<int*>(inputs[1].getData()));
|
|
|
|
|
|
|
|
ContextProjectionBackwardWeight<Device>(out_grad_mat.get(),
|
|
|
|
w_grad_mat.get(),
|
|
|
|
seq_vec,
|
|
|
|
context_length_,
|
|
|
|
context_start_,
|
|
|
|
total_pad_,
|
|
|
|
begin_pad_);
|
|
|
|
}
|
|
|
|
|
|
|
|
private:
|
|
|
|
size_t context_length_;
|
|
|
|
int context_start_;
|
|
|
|
size_t begin_pad_;
|
|
|
|
size_t total_pad_;
|
|
|
|
};
|
|
|
|
#endif
|
|
|
|
|
|
|
|
REGISTER_TYPED_FUNC(ContextProjectionForward,
|
|
|
|
CPU,
|
|
|
|
ContextProjectionForwardFunc);
|
|
|
|
REGISTER_TYPED_FUNC(ContextProjectionBackward,
|
|
|
|
CPU,
|
|
|
|
ContextProjectionBackwardFunc);
|
|
|
|
#ifndef PADDLE_ONLY_CPU
|
|
|
|
REGISTER_TYPED_FUNC(ContextProjectionForward,
|
|
|
|
GPU,
|
|
|
|
ContextProjectionForwardFunc);
|
|
|
|
REGISTER_TYPED_FUNC(ContextProjectionBackward,
|
|
|
|
GPU,
|
|
|
|
ContextProjectionBackwardFunc);
|
|
|
|
#if 0
|
|
|
|
REGISTER_TYPED_FUNC(ContextProjectionBackwardData,
|
|
|
|
GPU,
|
|
|
|
ContextProjectionBackwardDataFunc);
|
|
|
|
REGISTER_TYPED_FUNC(ContextProjectionBackwardWeight,
|
|
|
|
GPU,
|
|
|
|
ContextProjectionBackwardWeightFunc);
|
|
|
|
#endif
|
|
|
|
#endif
|
|
|
|
} // namespace paddle
|