You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/crop_op.h

106 lines
3.7 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
8 years ago
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
8 years ago
http://www.apache.org/licenses/LICENSE-2.0
8 years ago
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
8 years ago
#pragma once
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
#include "paddle/operators/strided_memcpy.h"
8 years ago
namespace paddle {
namespace operators { // Internal
8 years ago
template <typename T, size_t D, int MajorType = Eigen::RowMajor,
typename IndexType = Eigen::DenseIndex>
using EigenTensor = framework::EigenTensor<T, D, MajorType, IndexType>;
using framework::Tensor;
template <typename T>
class CropKernel : public framework::OpKernel<T> {
public:
void Compute(const framework::ExecutionContext& context) const override {
auto* x = context.Input<Tensor>("X");
auto* out = context.Output<Tensor>("Out");
const T* x_data = x->data<T>();
T* out_data = out->mutable_data<T>(context.GetPlace());
auto x_stride = framework::stride(x->dims());
auto out_stride = framework::stride(out->dims());
auto offsets = context.Attr<std::vector<int>>("offsets");
PADDLE_ENFORCE_EQ(
x->dims().size(), static_cast<int64_t>(offsets.size()),
"Offsets size should be equal to dimension size of input tensor.");
int64_t offset = 0;
for (size_t i = 0; i < offsets.size(); ++i) {
offset += (x_stride[i] * offsets[i]);
}
StridedMemcpy<T>(context.device_context(), x_data + offset, x_stride,
out->dims(), out_stride, out_data);
}
};
8 years ago
template <typename DeviceContext, typename T, size_t D>
8 years ago
void CropGradFunction(const framework::ExecutionContext& context) {
auto* d_x = context.Output<Tensor>(framework::GradVarName("X"));
if (d_x != nullptr) {
auto* d_out = context.Input<Tensor>(framework::GradVarName("Out"));
d_x->mutable_data<T>(context.GetPlace());
auto offsets = context.Attr<std::vector<int>>("offsets");
Eigen::array<std::pair<int, int>, D> paddings;
for (size_t i = 0; i < D; ++i) {
paddings[i].first = offsets[i];
paddings[i].second = d_x->dims()[i] - d_out->dims()[i] - offsets[i];
}
auto d_x_tensor = EigenTensor<T, D>::From(*d_x);
auto d_out_tensor = EigenTensor<T, D>::From(*d_out);
d_x_tensor.device(
*context.template device_context<DeviceContext>().eigen_device()) =
d_out_tensor.pad(paddings, 0);
8 years ago
}
}
template <typename DeviceContext, typename T>
class CropGradKernel : public framework::OpKernel<T> {
8 years ago
public:
void Compute(const framework::ExecutionContext& context) const override {
size_t rank =
context.Input<Tensor>(framework::GradVarName("Out"))->dims().size();
switch (rank) {
8 years ago
case 1:
CropGradFunction<DeviceContext, T, 1>(context);
8 years ago
break;
case 2:
CropGradFunction<DeviceContext, T, 2>(context);
8 years ago
break;
case 3:
CropGradFunction<DeviceContext, T, 3>(context);
8 years ago
break;
case 4:
CropGradFunction<DeviceContext, T, 4>(context);
8 years ago
break;
case 5:
CropGradFunction<DeviceContext, T, 5>(context);
8 years ago
break;
case 6:
CropGradFunction<DeviceContext, T, 6>(context);
8 years ago
break;
default:
PADDLE_THROW(
"CropOp only support tensors with no more than 6 dimensions.");
8 years ago
}
}
};
} // namespace operators
} // namespace paddle