You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/operators/gru_op.h

257 lines
10 KiB

7 years ago
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
7 years ago
http://www.apache.org/licenses/LICENSE-2.0
7 years ago
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
7 years ago
#pragma once
#include "paddle/operators/math/detail/activation_functions.h"
7 years ago
#include "paddle/operators/math/gru_compute.h"
#include "paddle/operators/math/math_function.h"
#include "paddle/operators/math/sequence2batch.h"
#include "paddle/framework/eigen.h"
#include "paddle/framework/op_registry.h"
namespace paddle {
namespace operators {
using LoDTensor = framework::LoDTensor;
using Tensor = framework::Tensor;
template <typename DeviceContext, typename T>
inline void ReorderInitState(const DeviceContext& ctx,
const framework::Tensor& src, const size_t* index,
framework::Tensor* dst, bool indexed_src) {
math::CopyMatrixRowsFunctor<DeviceContext, T> row_shuffle;
dst->mutable_data<T>(src.dims(), ctx.GetPlace());
row_shuffle(ctx, src, index, *dst, indexed_src);
}
template <typename DeviceContext, typename T>
7 years ago
class GRUKernel : public framework::OpKernel<T> {
public:
void BatchCompute(const framework::ExecutionContext& context) const {
auto* input = context.Input<LoDTensor>("Input");
auto* h0 = context.Input<Tensor>("H0");
auto* weight = context.Input<Tensor>("Weight");
const T* weight_data = weight->data<T>();
auto* bias = context.Input<Tensor>("Bias");
auto* batch_gate = context.Output<LoDTensor>("BatchGate");
batch_gate->mutable_data<T>(context.GetPlace());
auto* batch_reset_hidden_prev =
context.Output<LoDTensor>("BatchResetHiddenPrev");
batch_reset_hidden_prev->mutable_data<T>(context.GetPlace());
auto* batch_hidden = context.Output<LoDTensor>("BatchHidden");
batch_hidden->mutable_data<T>(context.GetPlace());
auto* hidden = context.Output<LoDTensor>("Hidden");
hidden->mutable_data<T>(context.GetPlace());
context.ShareLoD("Input", "Hidden");
auto hidden_dims = hidden->dims();
bool is_reverse = context.Attr<bool>("is_reverse");
math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
auto& dev_ctx = context.template device_context<DeviceContext>();
to_batch(dev_ctx, *input, *batch_gate, true, is_reverse);
7 years ago
if (bias) {
math::RowwiseAdd<DeviceContext, T> add_bias;
add_bias(dev_ctx, *batch_gate, *bias, batch_gate);
7 years ago
}
int frame_size = hidden_dims[1];
math::GRUMetaValue<T> gru_value;
gru_value.gate_weight = const_cast<T*>(weight_data);
gru_value.state_weight =
7 years ago
const_cast<T*>(weight_data + 2 * frame_size * frame_size);
Tensor ordered_h0;
const size_t* order = batch_gate->lod()[2].data();
if (h0) {
// Since the batch computing for GRU reorders the input sequences
// according to their length. The initialized cell state also needs
// to reorder.
ReorderInitState<DeviceContext, T>(
context.template device_context<DeviceContext>(), *h0, order,
&ordered_h0, true);
gru_value.prev_out_value = ordered_h0.data<T>();
} else {
gru_value.prev_out_value = nullptr;
}
7 years ago
auto batch_starts = batch_gate->lod()[0];
size_t num_batch = batch_starts.size() - 1;
auto active_node = math::detail::GetActivationType(
context.Attr<std::string>("activation"));
auto active_gate = math::detail::GetActivationType(
context.Attr<std::string>("gate_activation"));
7 years ago
for (size_t n = 0; n < num_batch; n++) {
int bstart = static_cast<int>(batch_starts[n]);
int bend = static_cast<int>(batch_starts[n + 1]);
int cur_batch_size = bend - bstart;
Tensor gate_t = batch_gate->Slice(bstart, bend);
Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
Tensor hidden_t = batch_hidden->Slice(bstart, bend);
gru_value.output_value = hidden_t.data<T>();
gru_value.gate_value = gate_t.data<T>();
gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
math::GRUUnitFunctor<DeviceContext, T>::compute(
dev_ctx, gru_value, frame_size, cur_batch_size, active_node,
active_gate);
gru_value.prev_out_value = gru_value.output_value;
7 years ago
}
math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
7 years ago
batch_hidden->set_lod(batch_gate->lod());
to_seq(dev_ctx, *batch_hidden, *hidden);
7 years ago
}
void Compute(const framework::ExecutionContext& context) const override {
BatchCompute(context);
}
};
template <typename DeviceContext, typename T>
7 years ago
class GRUGradKernel : public framework::OpKernel<T> {
public:
void BatchCompute(const framework::ExecutionContext& context) const {
auto* h0 = context.Input<Tensor>("H0");
auto* weight = context.Input<Tensor>("Weight");
const T* weight_data = weight->data<T>();
auto* batch_gate = context.Input<LoDTensor>("BatchGate");
auto* batch_reset_hidden_prev =
context.Input<LoDTensor>("BatchResetHiddenPrev");
auto* batch_hidden = context.Input<LoDTensor>("BatchHidden");
auto* hidden = context.Input<LoDTensor>("Hidden");
auto* hidden_grad =
context.Input<LoDTensor>(framework::GradVarName("Hidden"));
auto* input_grad =
context.Output<LoDTensor>(framework::GradVarName("Input"));
auto* h0_grad = context.Output<Tensor>(framework::GradVarName("H0"));
auto* weight_grad =
context.Output<Tensor>(framework::GradVarName("Weight"));
auto* bias_grad = context.Output<Tensor>(framework::GradVarName("Bias"));
auto gate_dims = batch_gate->dims();
auto hidden_dims = hidden->dims();
int frame_size = hidden_dims[1];
math::LoDTensor2BatchFunctor<DeviceContext, T> to_batch;
7 years ago
LoDTensor batch_hidden_grad, batch_gate_grad, batch_reset_hidden_prev_grad;
batch_hidden_grad.mutable_data<T>(hidden_dims, context.GetPlace());
batch_gate_grad.mutable_data<T>(gate_dims, context.GetPlace());
batch_reset_hidden_prev_grad.mutable_data<T>(hidden_dims,
context.GetPlace());
math::SetConstant<DeviceContext, T> zero;
auto& dev_ctx = context.template device_context<DeviceContext>();
zero(dev_ctx, &batch_hidden_grad, static_cast<T>(0.0));
zero(dev_ctx, &batch_gate_grad, static_cast<T>(0.0));
zero(dev_ctx, &batch_reset_hidden_prev_grad, static_cast<T>(0.0));
7 years ago
Tensor ordered_h0, ordered_h0_grad;
const size_t* order = batch_gate->lod()[2].data();
if (h0) {
ReorderInitState<DeviceContext, T>(dev_ctx, *h0, order, &ordered_h0,
true);
}
if (h0_grad) {
ordered_h0_grad.mutable_data<T>(h0_grad->dims(), context.GetPlace());
zero(context.template device_context<DeviceContext>(), &ordered_h0_grad,
static_cast<T>(0.0));
}
7 years ago
bool is_reverse = context.Attr<bool>("is_reverse");
batch_hidden_grad.set_lod(batch_hidden->lod());
to_batch(dev_ctx, *hidden_grad, batch_hidden_grad, false, is_reverse);
7 years ago
math::GRUMetaValue<T> gru_value;
gru_value.gate_weight = const_cast<T*>(weight_data);
gru_value.state_weight =
7 years ago
const_cast<T*>(weight_data + 2 * frame_size * frame_size);
math::GRUMetaGrad<T> gru_grad;
7 years ago
if (weight_grad) {
gru_grad.gate_weight_grad =
7 years ago
weight_grad->mutable_data<T>(context.GetPlace());
zero(dev_ctx, weight_grad, static_cast<T>(0.0));
gru_grad.state_weight_grad =
7 years ago
weight_grad->data<T>() + 2 * frame_size * frame_size;
} else {
gru_grad.gate_weight_grad = nullptr;
gru_grad.state_weight_grad = nullptr;
7 years ago
}
auto batch_starts = batch_hidden_grad.lod()[0];
size_t num_batch = batch_starts.size() - 1;
auto active_node = math::detail::GetActivationType(
context.Attr<std::string>("activation"));
auto active_gate = math::detail::GetActivationType(
context.Attr<std::string>("gate_activation"));
7 years ago
for (int n = static_cast<int>(num_batch) - 1; n >= 0; n--) {
int bstart = static_cast<int>(batch_starts[n]);
int bend = static_cast<int>(batch_starts[n + 1]);
int cur_batch_size = bend - bstart;
Tensor gate_t = batch_gate->Slice(bstart, bend);
gru_value.gate_value = gate_t.data<T>();
7 years ago
Tensor reset_hidden_prev_t = batch_reset_hidden_prev->Slice(bstart, bend);
gru_value.reset_output_value = reset_hidden_prev_t.data<T>();
7 years ago
Tensor hidden_grad_t = batch_hidden_grad.Slice(bstart, bend);
gru_grad.output_grad = hidden_grad_t.data<T>();
7 years ago
Tensor gate_grad_t = batch_gate_grad.Slice(bstart, bend);
gru_grad.gate_grad = gate_grad_t.data<T>();
7 years ago
Tensor reset_hidden_prev_grad_t =
batch_reset_hidden_prev_grad.Slice(bstart, bend);
gru_grad.reset_output_grad = reset_hidden_prev_grad_t.data<T>();
7 years ago
if (n == 0) {
gru_value.prev_out_value = h0 ? ordered_h0.data<T>() : nullptr;
gru_grad.prev_out_grad =
h0 && h0_grad ? ordered_h0_grad.data<T>() : nullptr;
7 years ago
} else {
int bstart_pre = static_cast<int>(batch_starts[n - 1]);
Tensor hidden_prev_t = batch_hidden->Slice(bstart_pre, bstart);
gru_value.prev_out_value = hidden_prev_t.data<T>();
7 years ago
Tensor hidden_prev_grad_t = batch_hidden_grad.Slice(bstart_pre, bstart);
gru_grad.prev_out_grad = hidden_prev_grad_t.data<T>();
7 years ago
}
math::GRUUnitGradFunctor<DeviceContext, T>::compute(
dev_ctx, gru_value, gru_grad, frame_size, cur_batch_size, active_node,
active_gate);
7 years ago
}
if (input_grad) {
input_grad->mutable_data<T>(context.GetPlace());
math::Batch2LoDTensorFunctor<DeviceContext, T> to_seq;
7 years ago
batch_gate_grad.set_lod(batch_gate->lod());
to_seq(dev_ctx, batch_gate_grad, *input_grad);
7 years ago
}
if (bias_grad) {
bias_grad->mutable_data<T>(context.GetPlace());
math::ColwiseSum<DeviceContext, T> col_sum;
col_sum(dev_ctx, batch_gate_grad, bias_grad);
7 years ago
}
if (h0 && h0_grad) {
ReorderInitState<DeviceContext, T>(dev_ctx, ordered_h0_grad, order,
h0_grad, false);
}
7 years ago
}
void Compute(const framework::ExecutionContext& context) const override {
BatchCompute(context);
}
};
} // namespace operators
} // namespace paddle