You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/v2/trainer.py

143 lines
4.5 KiB

import collections
import py_paddle.swig_paddle as api
from paddle.proto.ModelConfig_pb2 import ModelConfig
from data_feeder import DataFeeder
from . import event as v2_event
from . import layer as v2_layer
from . import optimizer as v2_optimizer
from . import parameters as v2_parameters
8 years ago
__all__ = ['ITrainer', 'SGD']
def default_event_handler(event):
8 years ago
"""
Default event handler. It will print some log and save mode.
TODO(yuyang18): Complete it!
:param event:
:return:
"""
pass
class ITrainer(object):
8 years ago
"""
The interface of Trainer. The only exposed method is `train`.
"""
def train(self,
train_reader_creator,
topology,
parameters,
test_data_reader=None,
event_handler=None):
8 years ago
"""
train method.
:param train_reader_creator:
8 years ago
:param topology:
:param parameters:
:param test_data_reader:
:param event_handler:
:return:
"""
raise NotImplementedError()
8 years ago
class SGD(ITrainer):
def __init__(self, update_equation):
"""
Simple SGD Trainer.
8 years ago
:param update_equation: The optimizer object.
:type update_equation: v2_optimizer.Optimizer
"""
if not isinstance(update_equation, v2_optimizer.Optimizer):
raise ValueError("update equation parameter must be "
"paddle.v2.optimizer.Optimizer")
self.__optimizer__ = update_equation
def train(self,
train_reader,
topology,
parameters,
num_passes=1,
event_handler=None,
data_types=None,
reader_dict=None):
"""
Training method. Will train num_passes of input data.
:param train_reader:
:param topology: Network Topology, use one or more Layers to represent it.
:param parameters: The parameter pools.
:param num_passes: The total train passes.
:param event_handler: Event handler. A method will be invoked when event
occurred.
:type event_handler: (BaseEvent) => None
:param data_types: Not important, will be removed after data refactor.
:return:
"""
if event_handler is None:
event_handler = default_event_handler
topology = v2_layer.parse_network(topology)
__check_train_args__(**locals())
gm = api.GradientMachine.createFromConfigProto(
topology, api.CREATE_MODE_NORMAL, self.__optimizer__.enable_types())
assert isinstance(gm, api.GradientMachine)
parameters.append_gradient_machine(gm)
updater = self.__optimizer__.create_local_updater()
updater.init(gm)
gm.start()
out_args = api.Arguments.createArguments(0)
feeder = DataFeeder(data_types, reader_dict)
for pass_id in xrange(num_passes):
updater.startPass()
for batch_id, data_batch in enumerate(train_reader()):
pass_type = updater.startBatch(len(data_batch))
gm.forwardBackward(feeder(data_batch), out_args, pass_type)
for each_param in gm.getParameters():
updater.update(each_param)
# Get cost. We use numpy to calculate total cost for this batch.
cost_vec = out_args.getSlotValue(0)
cost_vec = cost_vec.copyToNumpyMat()
cost = cost_vec.sum() / len(data_batch)
updater.finishBatch(cost)
event_handler(
8 years ago
v2_event.EndIteration(
pass_id=pass_id, batch_id=batch_id, cost=cost))
updater.finishPass()
gm.finish()
def __check_train_args__(train_reader, topology, parameters, event_handler,
**kwargs):
"""
Check train function's argument types
"""
if not callable(train_reader) or not isinstance(train_reader(),
collections.Iterator):
raise TypeError('train_data_reader should be a function, '
'which can return a iterator')
if not isinstance(topology, ModelConfig):
raise TypeError('topology should be a model config')
if not isinstance(parameters, v2_parameters.Parameters):
raise TypeError('parameters should be a parameter pool')
if not callable(event_handler):
raise TypeError('event handler should be a function')