You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/paddle/fluid/operators/chunk_eval_op.cc

166 lines
6.9 KiB

/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at
http://www.apache.org/licenses/LICENSE-2.0
Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
See the License for the specific language governing permissions and
limitations under the License. */
#include "paddle/fluid/operators/chunk_eval_op.h"
#include <string>
#include <vector>
namespace paddle {
namespace operators {
class ChunkEvalOp : public framework::OperatorWithKernel {
public:
using framework::OperatorWithKernel::OperatorWithKernel;
void InferShape(framework::InferShapeContext *ctx) const override {
PADDLE_ENFORCE(ctx->HasInput("Inference"),
"Input(Inference) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasInput("Label"),
"Input(Label) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Precision"),
"Output(Precision) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("Recall"),
"Output(Recall) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("F1-Score"),
"Output(F1-Score) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("NumInferChunks"),
"Output(NumInferChunks) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(ctx->HasOutput("NumLabelChunks"),
"Output(NumLabelChunks) of ChunkEvalOp should not be null.");
PADDLE_ENFORCE(
ctx->HasOutput("NumCorrectChunks"),
"Output(NumCorrectChunks) of ChunkEvalOp should not be null.");
auto inference_dim = ctx->GetInputDim("Inference");
auto label_dim = ctx->GetInputDim("Label");
PADDLE_ENFORCE(inference_dim == label_dim,
"Inference's shape must be the same as Label's shape.");
ctx->SetOutputDim("Precision", {1});
ctx->SetOutputDim("Recall", {1});
ctx->SetOutputDim("F1-Score", {1});
ctx->SetOutputDim("NumInferChunks", {1});
ctx->SetOutputDim("NumLabelChunks", {1});
ctx->SetOutputDim("NumCorrectChunks", {1});
}
protected:
framework::OpKernelType GetExpectedKernelType(
const framework::ExecutionContext &ctx) const override {
[WIP] Move DataType enum inside VarType (#8447) * Move Pod Types from DataType enum to Type enum * Fixed data_type.h * Fix type in TensorDesc * Add comment to framework.proto * Fixed type in data_type.h * Updated format of type in data_type.h * Fix var_desc.h * Fix op_kernel_type.h * Fixed data_type_transform_test.cc * Fix operator.h * Fixed data_type_transform.cc * Fixed op_kernel_type_test.cc * Fix operator.cc * Fixed data_layout_transform_test.cc * Fix var_desc.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * fixed protobuf.cc * Fix data_layout_transform_test.cc and op_kernel_type_test.cc * Fixed rnn_memory_helper_op.cc * Fix progrma_desc_test.cc * Fixed fill_constant_batch_size_like_op.cc * Fix operator_test.cc * Fixed fill_constant_op.cc * Fixed gaussian_random_op.cc * Fixed uniform_random_op.cc * Fixed edit_distance_op.cc * Fixed fill_constant_batch_size_like_op.cc * Fixed rnn_memory_helper_op.cc * Fixed chunk_eval_op.cc * Fixed assign_value_op.cc * Fixed assign_value_op.h * Fixed cast_op.h * Fixed cast_op.h * Fix fill constant op * Fixed clang for assign_value_op.cc * Fix one_hot_op.h * Fix one_hot_op.cc * Fix fill_op.cc * Fixed sum_op.cc * Fixed sum_op clang * Fix uniform_random_op.cc * Fix gaussian_random_op.cc * Fix backward.cc * Fix protobuf.cc * Fixed prune_test.cc * Fixed op_registry_test.cc * Fix data_device_transform_test.cu * Fix travis error * Fixed one_hot_op.cu * Fixed op_registry_test.cc * Fixed nccl_op.cc * Fixing python tests * Revert "Fixing python tests" This reverts commit fccaa4c5818ed9f379ea1ce4315066cc78076c64. * Fixing Pybind to remove data type * Fixing tensor.py * Updated the new files: * Resolve error in merge conflict of fill_constant_batch_size_like_op.cc
7 years ago
return framework::OpKernelType(framework::proto::VarType::FP32,
platform::CPUPlace());
}
};
class ChunkEvalOpMaker : public framework::OpProtoAndCheckerMaker {
public:
void Make() override {
AddInput("Inference",
"(Tensor, default: Tensor<int64_t>). "
"Predictions from the network.");
AddInput("Label",
"(Tensor, default: Tensor<int64_t>). The true tag sequences.");
AddOutput("Precision",
"(float). The evaluated precision (called positive predictive "
"value) of chunks on the given mini-batch.");
AddOutput("Recall",
"(float). The evaluated recall (true positive rate or "
"sensitivity) of chunks on the given mini-batch.");
AddOutput("F1-Score",
"(float). The evaluated F1-Score on the given mini-batch.");
AddOutput("NumInferChunks",
"(int64_t). The number of chunks in Inference on the given "
"mini-batch.");
AddOutput(
"NumLabelChunks",
"(int64_t). The number of chunks in Label on the given mini-batch.");
AddOutput(
"NumCorrectChunks",
"(int64_t). The number of chunks both in Inference and Label on the "
"given mini-batch.");
AddAttr<int>("num_chunk_types",
"The number of chunk type. See the description for details.");
AddAttr<std::string>("chunk_scheme",
"The labeling scheme indicating "
"how to encode the chunks. Must be IOB, IOE, IOBES or "
"plain. See the description"
"for details.")
.SetDefault("IOB");
AddAttr<std::vector<int>>("excluded_chunk_types",
"A list including chunk type ids "
"indicating chunk types that are not counted. "
"See the description for details.")
.SetDefault(std::vector<int>{});
AddComment(R"DOC(
For some basics of chunking, please refer to
'Chunking with Support Vector Machines <https://aclanthology.info/pdf/N/N01/N01-1025.pdf>'.
ChunkEvalOp computes the precision, recall, and F1-score of chunk detection,
and supports IOB, IOE, IOBES and IO (also known as plain) tagging schemes.
Here is a NER example of labeling for these tagging schemes:
Li Ming works at Agricultural Bank of China in Beijing.
IO I-PER I-PER O O I-ORG I-ORG I-ORG I-ORG O I-LOC
IOB B-PER I-PER O O B-ORG I-ORG I-ORG I-ORG O B-LOC
IOE I-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O E-LOC
IOBES B-PER E-PER O O I-ORG I-ORG I-ORG E-ORG O S-LOC
There are three chunk types(named entity types) including PER(person), ORG(organization)
and LOC(LOCATION), and we can see that the labels have the form <tag type>-<chunk type>.
Since the calculations actually use label ids rather than labels, extra attention
should be paid when mapping labels to ids to make CheckEvalOp work. The key point
is that the listed equations are satisfied by ids.
tag_type = label % num_tag_type
chunk_type = label / num_tag_type
where `num_tag_type` is the num of tag types in the tagging scheme, `num_chunk_type`
is the num of chunk types, and `tag_type` get its value from the following table.
Scheme Begin Inside End Single
plain 0 - - -
IOB 0 1 - -
IOE - 0 1 -
IOBES 0 1 2 3
Still use NER as example, assuming the tagging scheme is IOB while chunk types are ORG,
PER and LOC. To satisfy the above equations, the label map can be like this:
B-ORG 0
I-ORG 1
B-PER 2
I-PER 3
B-LOC 4
I-LOC 5
O 6
It's not hard to verify the equations noting that the num of chunk types
is 3 and the num of tag types in IOB scheme is 2. For example, the label
id of I-LOC is 5, the tag type id of I-LOC is 1, and the chunk type id of
I-LOC is 2, which consistent with the results from the equations.
)DOC");
}
};
} // namespace operators
} // namespace paddle
namespace ops = paddle::operators;
REGISTER_OP_WITHOUT_GRADIENT(chunk_eval, ops::ChunkEvalOp,
ops::ChunkEvalOpMaker);
REGISTER_OP_CPU_KERNEL(chunk_eval,
ops::ChunkEvalKernel<paddle::platform::CPUPlace, float>);