You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
Paddle/python/paddle/static/input.py

333 lines
12 KiB

# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import six
import paddle
from paddle.fluid import core, Variable
from paddle.fluid.layer_helper import LayerHelper
from paddle.fluid.data_feeder import check_type
from paddle.fluid.framework import convert_np_dtype_to_dtype_
from paddle.fluid.framework import static_only
__all__ = ['data', 'InputSpec']
@static_only
def data(name, shape, dtype=None, lod_level=0):
"""
**Data Layer**
This function creates a variable on the global block. The global variable
can be accessed by all the following operators in the graph. The variable
is a placeholder that could be fed with input, such as Executor can feed
input into the variable. When `dtype` is None, the dtype
will get from the global dtype by `paddle.get_default_dtype()`.
Args:
name (str): The name/alias of the variable, see :ref:`api_guide_Name`
for more details.
shape (list|tuple): List|Tuple of integers declaring the shape. You can
set "None" or -1 at a dimension to indicate the dimension can be of any
size. For example, it is useful to set changeable batch size as "None" or -1.
dtype (np.dtype|str, optional): The type of the data. Supported
dtype: bool, float16, float32, float64, int8, int16, int32, int64,
uint8. Default: None. When `dtype` is not set, the dtype will get
from the global dtype by `paddle.get_default_dtype()`.
lod_level (int, optional): The LoD level of the LoDTensor. Usually users
don't have to set this value. For more details about when and how to
use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0.
Returns:
Variable: The global variable that gives access to the data.
Examples:
.. code-block:: python
import numpy as np
import paddle
# Creates a variable with fixed size [3, 2, 1]
# User can only feed data of the same shape to x
# the dtype is not set, so it will set "float32" by
# paddle.get_default_dtype(). You can use paddle.get_default_dtype() to
# change the global dtype
x = paddle.static.data(name='x', shape=[3, 2, 1])
# Creates a variable with changeable batch size -1.
# Users can feed data of any batch size into y,
# but size of each data sample has to be [2, 1]
y = paddle.static.data(name='y', shape=[-1, 2, 1], dtype='float32')
z = x + y
# In this example, we will feed x and y with np-ndarray "1"
# and fetch z, like implementing "1 + 1 = 2" in PaddlePaddle
feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
exe = paddle.static.Executor(paddle.framework.CPUPlace())
out = exe.run(paddle.static.default_main_program(),
feed={
'x': feed_data,
'y': feed_data
},
fetch_list=[z.name])
# np-ndarray of shape=[3, 2, 1], dtype=float32, whose elements are 2
print(out)
"""
helper = LayerHelper('data', **locals())
check_type(name, 'name', (six.binary_type, six.text_type), 'data')
check_type(shape, 'shape', (list, tuple), 'data')
shape = list(shape)
for i in six.moves.range(len(shape)):
if shape[i] is None:
shape[i] = -1
if dtype:
return helper.create_global_variable(
name=name,
shape=shape,
dtype=dtype,
type=core.VarDesc.VarType.LOD_TENSOR,
stop_gradient=True,
lod_level=lod_level,
is_data=True,
need_check_feed=True)
else:
return helper.create_global_variable(
name=name,
shape=shape,
dtype=paddle.get_default_dtype(),
type=core.VarDesc.VarType.LOD_TENSOR,
stop_gradient=True,
lod_level=lod_level,
is_data=True,
need_check_feed=True)
class InputSpec(object):
"""
InputSpec describes the signature information of the model input, such as ``shape`` , ``dtype`` , ``name`` .
This interface is often used to specify input tensor information of models in high-level API.
It's also used to specify the tensor information for each input parameter of the forward function
decorated by `@paddle.jit.to_static`.
Args:
shape (tuple(integers)|list[integers]): List|Tuple of integers
declaring the shape. You can set "None" or -1 at a dimension
to indicate the dimension can be of any size. For example,
it is useful to set changeable batch size as "None" or -1.
dtype (np.dtype|str, optional): The type of the data. Supported
dtype: bool, float16, float32, float64, int8, int16, int32, int64,
uint8. Default: float32.
name (str): The name/alias of the variable, see :ref:`api_guide_Name`
for more details.
Examples:
.. code-block:: python
from paddle.static import InputSpec
input = InputSpec([None, 784], 'float32', 'x')
label = InputSpec([None, 1], 'int64', 'label')
print(input) # InputSpec(shape=(-1, 784), dtype=VarType.FP32, name=x)
print(label) # InputSpec(shape=(-1, 1), dtype=VarType.INT64, name=label)
"""
def __init__(self, shape, dtype='float32', name=None):
# replace `None` in shape with -1
self.shape = self._verify(shape)
# convert dtype into united represention
if dtype is not None:
if not isinstance(dtype, core.VarDesc.VarType):
dtype = convert_np_dtype_to_dtype_(dtype)
self.dtype = dtype
self.name = name
def _create_feed_layer(self):
return data(self.name, shape=self.shape, dtype=self.dtype)
def __repr__(self):
return '{}(shape={}, dtype={}, name={})'.format(
type(self).__name__, self.shape, self.dtype, self.name)
@classmethod
def from_tensor(cls, tensor, name=None):
"""
Generates a InputSpec based on the description of input tensor.
Args:
tensor(Tensor): the source tensor to generate a InputSpec instance
Returns:
A InputSpec instance generated from Tensor.
Examples:
.. code-block:: python
import numpy as np
import paddle
from paddle.static import InputSpec
paddle.disable_static()
x = paddle.to_tensor(np.ones([2, 2], np.float32))
x_spec = InputSpec.from_tensor(x, name='x')
print(x_spec) # InputSpec(shape=(2, 2), dtype=VarType.FP32, name=x)
"""
if isinstance(tensor, (Variable, core.VarBase)):
return cls(tensor.shape, tensor.dtype, name or tensor.name)
else:
raise ValueError(
"Input `tensor` should be a Tensor, but received {}.".format(
type(tensor).__name__))
@classmethod
def from_numpy(cls, ndarray, name=None):
"""
Generates a InputSpec based on the description of input np.ndarray.
Args:
tensor(Tensor): the source numpy ndarray to generate a InputSpec instance
Returns:
A InputSpec instance generated from Tensor.
Examples:
.. code-block:: python
import numpy as np
from paddle.static import InputSpec
x = np.ones([2, 2], np.float32)
x_spec = InputSpec.from_numpy(x, name='x')
print(x_spec) # InputSpec(shape=(2, 2), dtype=VarType.FP32, name=x)
"""
return cls(ndarray.shape, ndarray.dtype, name)
def batch(self, batch_size):
"""
Inserts `batch_size` in front of the `shape`.
Args:
batch_size(int): the inserted integer value of batch size.
Returns:
The original InputSpec instance by inserting `batch_size` in front of `shape`.
Examples:
.. code-block:: python
from paddle.static import InputSpec
x_spec = InputSpec(shape=[64], dtype='float32', name='x')
x_spec.batch(4)
print(x_spec) # InputSpec(shape=(4, 64), dtype=VarType.FP32, name=x)
"""
if isinstance(batch_size, (list, tuple)):
if len(batch_size) != 1:
raise ValueError(
"Length of batch_size: {} shall be 1, but received {}.".
format(batch_size, len(batch_size)))
batch_size = batch_size[1]
elif not isinstance(batch_size, six.integer_types):
raise TypeError("type(batch_size) shall be `int`, but received {}.".
format(type(batch_size).__name__))
new_shape = [batch_size] + list(self.shape)
self.shape = tuple(new_shape)
return self
def unbatch(self):
"""
Removes the first element of `shape`.
Returns:
The original InputSpec instance by removing the first element of `shape` .
Examples:
.. code-block:: python
from paddle.static import InputSpec
x_spec = InputSpec(shape=[4, 64], dtype='float32', name='x')
x_spec.unbatch()
print(x_spec) # InputSpec(shape=(64,), dtype=VarType.FP32, name=x)
"""
if len(self.shape) == 0:
raise ValueError(
"Not support to unbatch a InputSpec when len(shape) == 0.")
self.shape = self._verify(self.shape[1:])
return self
def _verify(self, shape):
"""
Verifies the input shape and modifies `None` into `-1`.
"""
if not isinstance(shape, (list, tuple)):
raise TypeError(
"Type of `shape` in InputSpec should be one of (tuple, list), but received {}.".
format(type(shape).__name__))
if len(shape) == 0:
raise ValueError(
"`shape` in InputSpec should contain at least 1 element, but received {}.".
format(shape))
for i, ele in enumerate(shape):
if ele is not None:
if not isinstance(ele, six.integer_types):
raise ValueError(
"shape[{}] should be an `int`, but received `{}`:{}.".
format(i, type(ele).__name__, ele))
if ele is None or ele < -1:
shape[i] = -1
return tuple(shape)
def __hash__(self):
# Note(Aurelius84): `name` is not considered as a field to compute hashkey.
# Because it's no need to generate a new program in following cases while using
# @paddle.jit.to_static.
#
# Case 1:
# foo(x_var)
# foo(y_var)
# x_var and y_var hold same shape and dtype, they should share a same program.
#
#
# Case 2:
# foo(x_var)
# foo(x_np) # x_np is a numpy.ndarray.
# x_var and x_np hold same shape and dtype, they should also share a same program.
return hash((tuple(self.shape), self.dtype))
def __eq__(self, other):
slots = ['shape', 'dtype', 'name']
return (type(self) is type(other) and all(
getattr(self, attr) == getattr(other, attr) for attr in slots))
def __ne__(self, other):
return not self == other