|
|
|
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
|
|
|
#
|
|
|
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
|
|
|
# you may not use this file except in compliance with the License.
|
|
|
|
# You may obtain a copy of the License at
|
|
|
|
#
|
|
|
|
# http://www.apache.org/licenses/LICENSE-2.0
|
|
|
|
#
|
|
|
|
# Unless required by applicable law or agreed to in writing, software
|
|
|
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
|
|
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
|
|
|
# See the License for the specific language governing permissions and
|
|
|
|
# limitations under the License.
|
|
|
|
|
|
|
|
import six
|
|
|
|
|
|
|
|
import paddle
|
|
|
|
from paddle.fluid import core, Variable
|
|
|
|
from paddle.fluid.layer_helper import LayerHelper
|
|
|
|
from paddle.fluid.data_feeder import check_type
|
|
|
|
from paddle.fluid.framework import convert_np_dtype_to_dtype_
|
|
|
|
from paddle.fluid.framework import static_only
|
|
|
|
|
|
|
|
__all__ = ['data', 'InputSpec']
|
|
|
|
|
|
|
|
|
|
|
|
@static_only
|
|
|
|
def data(name, shape, dtype=None, lod_level=0):
|
|
|
|
"""
|
|
|
|
**Data Layer**
|
|
|
|
|
|
|
|
This function creates a variable on the global block. The global variable
|
|
|
|
can be accessed by all the following operators in the graph. The variable
|
|
|
|
is a placeholder that could be fed with input, such as Executor can feed
|
|
|
|
input into the variable. When `dtype` is None, the dtype
|
|
|
|
will get from the global dtype by `paddle.get_default_dtype()`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
name (str): The name/alias of the variable, see :ref:`api_guide_Name`
|
|
|
|
for more details.
|
|
|
|
shape (list|tuple): List|Tuple of integers declaring the shape. You can
|
|
|
|
set "None" or -1 at a dimension to indicate the dimension can be of any
|
|
|
|
size. For example, it is useful to set changeable batch size as "None" or -1.
|
|
|
|
dtype (np.dtype|str, optional): The type of the data. Supported
|
|
|
|
dtype: bool, float16, float32, float64, int8, int16, int32, int64,
|
|
|
|
uint8. Default: None. When `dtype` is not set, the dtype will get
|
|
|
|
from the global dtype by `paddle.get_default_dtype()`.
|
|
|
|
lod_level (int, optional): The LoD level of the LoDTensor. Usually users
|
|
|
|
don't have to set this value. For more details about when and how to
|
|
|
|
use LoD level, see :ref:`user_guide_lod_tensor` . Default: 0.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
Variable: The global variable that gives access to the data.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
|
|
|
|
# Creates a variable with fixed size [3, 2, 1]
|
|
|
|
# User can only feed data of the same shape to x
|
|
|
|
# the dtype is not set, so it will set "float32" by
|
|
|
|
# paddle.get_default_dtype(). You can use paddle.get_default_dtype() to
|
|
|
|
# change the global dtype
|
|
|
|
x = paddle.static.data(name='x', shape=[3, 2, 1])
|
|
|
|
|
|
|
|
# Creates a variable with changeable batch size -1.
|
|
|
|
# Users can feed data of any batch size into y,
|
|
|
|
# but size of each data sample has to be [2, 1]
|
|
|
|
y = paddle.static.data(name='y', shape=[-1, 2, 1], dtype='float32')
|
|
|
|
|
|
|
|
z = x + y
|
|
|
|
|
|
|
|
# In this example, we will feed x and y with np-ndarray "1"
|
|
|
|
# and fetch z, like implementing "1 + 1 = 2" in PaddlePaddle
|
|
|
|
feed_data = np.ones(shape=[3, 2, 1], dtype=np.float32)
|
|
|
|
|
|
|
|
exe = paddle.static.Executor(paddle.framework.CPUPlace())
|
|
|
|
out = exe.run(paddle.static.default_main_program(),
|
|
|
|
feed={
|
|
|
|
'x': feed_data,
|
|
|
|
'y': feed_data
|
|
|
|
},
|
|
|
|
fetch_list=[z.name])
|
|
|
|
|
|
|
|
# np-ndarray of shape=[3, 2, 1], dtype=float32, whose elements are 2
|
|
|
|
print(out)
|
|
|
|
|
|
|
|
"""
|
|
|
|
helper = LayerHelper('data', **locals())
|
|
|
|
check_type(name, 'name', (six.binary_type, six.text_type), 'data')
|
|
|
|
check_type(shape, 'shape', (list, tuple), 'data')
|
|
|
|
|
|
|
|
shape = list(shape)
|
|
|
|
for i in six.moves.range(len(shape)):
|
|
|
|
if shape[i] is None:
|
|
|
|
shape[i] = -1
|
|
|
|
|
|
|
|
if dtype:
|
|
|
|
return helper.create_global_variable(
|
|
|
|
name=name,
|
|
|
|
shape=shape,
|
|
|
|
dtype=dtype,
|
|
|
|
type=core.VarDesc.VarType.LOD_TENSOR,
|
|
|
|
stop_gradient=True,
|
|
|
|
lod_level=lod_level,
|
|
|
|
is_data=True,
|
|
|
|
need_check_feed=True)
|
|
|
|
else:
|
|
|
|
return helper.create_global_variable(
|
|
|
|
name=name,
|
|
|
|
shape=shape,
|
|
|
|
dtype=paddle.get_default_dtype(),
|
|
|
|
type=core.VarDesc.VarType.LOD_TENSOR,
|
|
|
|
stop_gradient=True,
|
|
|
|
lod_level=lod_level,
|
|
|
|
is_data=True,
|
|
|
|
need_check_feed=True)
|
|
|
|
|
|
|
|
|
|
|
|
class InputSpec(object):
|
|
|
|
"""
|
|
|
|
InputSpec describes the signature information of the model input, such as ``shape`` , ``dtype`` , ``name`` .
|
|
|
|
|
|
|
|
This interface is often used to specify input tensor information of models in high-level API.
|
|
|
|
It's also used to specify the tensor information for each input parameter of the forward function
|
|
|
|
decorated by `@paddle.jit.to_static`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
shape (tuple(integers)|list[integers]): List|Tuple of integers
|
|
|
|
declaring the shape. You can set "None" or -1 at a dimension
|
|
|
|
to indicate the dimension can be of any size. For example,
|
|
|
|
it is useful to set changeable batch size as "None" or -1.
|
|
|
|
dtype (np.dtype|str, optional): The type of the data. Supported
|
|
|
|
dtype: bool, float16, float32, float64, int8, int16, int32, int64,
|
|
|
|
uint8. Default: float32.
|
|
|
|
name (str): The name/alias of the variable, see :ref:`api_guide_Name`
|
|
|
|
for more details.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from paddle.static import InputSpec
|
|
|
|
|
|
|
|
input = InputSpec([None, 784], 'float32', 'x')
|
|
|
|
label = InputSpec([None, 1], 'int64', 'label')
|
|
|
|
|
|
|
|
print(input) # InputSpec(shape=(-1, 784), dtype=VarType.FP32, name=x)
|
|
|
|
print(label) # InputSpec(shape=(-1, 1), dtype=VarType.INT64, name=label)
|
|
|
|
"""
|
|
|
|
|
|
|
|
def __init__(self, shape, dtype='float32', name=None):
|
|
|
|
# replace `None` in shape with -1
|
|
|
|
self.shape = self._verify(shape)
|
|
|
|
# convert dtype into united represention
|
|
|
|
if dtype is not None:
|
|
|
|
if not isinstance(dtype, core.VarDesc.VarType):
|
|
|
|
dtype = convert_np_dtype_to_dtype_(dtype)
|
|
|
|
self.dtype = dtype
|
|
|
|
self.name = name
|
|
|
|
|
|
|
|
def _create_feed_layer(self):
|
|
|
|
return data(self.name, shape=self.shape, dtype=self.dtype)
|
|
|
|
|
|
|
|
def __repr__(self):
|
|
|
|
return '{}(shape={}, dtype={}, name={})'.format(
|
|
|
|
type(self).__name__, self.shape, self.dtype, self.name)
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_tensor(cls, tensor, name=None):
|
|
|
|
"""
|
|
|
|
Generates a InputSpec based on the description of input tensor.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tensor(Tensor): the source tensor to generate a InputSpec instance
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A InputSpec instance generated from Tensor.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
import paddle
|
|
|
|
from paddle.static import InputSpec
|
|
|
|
|
|
|
|
paddle.disable_static()
|
|
|
|
|
|
|
|
x = paddle.to_tensor(np.ones([2, 2], np.float32))
|
|
|
|
x_spec = InputSpec.from_tensor(x, name='x')
|
|
|
|
print(x_spec) # InputSpec(shape=(2, 2), dtype=VarType.FP32, name=x)
|
|
|
|
|
|
|
|
"""
|
|
|
|
if isinstance(tensor, (Variable, core.VarBase)):
|
|
|
|
return cls(tensor.shape, tensor.dtype, name or tensor.name)
|
|
|
|
else:
|
|
|
|
raise ValueError(
|
|
|
|
"Input `tensor` should be a Tensor, but received {}.".format(
|
|
|
|
type(tensor).__name__))
|
|
|
|
|
|
|
|
@classmethod
|
|
|
|
def from_numpy(cls, ndarray, name=None):
|
|
|
|
"""
|
|
|
|
Generates a InputSpec based on the description of input np.ndarray.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
tensor(Tensor): the source numpy ndarray to generate a InputSpec instance
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
A InputSpec instance generated from Tensor.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
import numpy as np
|
|
|
|
from paddle.static import InputSpec
|
|
|
|
|
|
|
|
x = np.ones([2, 2], np.float32)
|
|
|
|
x_spec = InputSpec.from_numpy(x, name='x')
|
|
|
|
print(x_spec) # InputSpec(shape=(2, 2), dtype=VarType.FP32, name=x)
|
|
|
|
|
|
|
|
"""
|
|
|
|
return cls(ndarray.shape, ndarray.dtype, name)
|
|
|
|
|
|
|
|
def batch(self, batch_size):
|
|
|
|
"""
|
|
|
|
Inserts `batch_size` in front of the `shape`.
|
|
|
|
|
|
|
|
Args:
|
|
|
|
batch_size(int): the inserted integer value of batch size.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The original InputSpec instance by inserting `batch_size` in front of `shape`.
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from paddle.static import InputSpec
|
|
|
|
|
|
|
|
x_spec = InputSpec(shape=[64], dtype='float32', name='x')
|
|
|
|
x_spec.batch(4)
|
|
|
|
print(x_spec) # InputSpec(shape=(4, 64), dtype=VarType.FP32, name=x)
|
|
|
|
|
|
|
|
"""
|
|
|
|
if isinstance(batch_size, (list, tuple)):
|
|
|
|
if len(batch_size) != 1:
|
|
|
|
raise ValueError(
|
|
|
|
"Length of batch_size: {} shall be 1, but received {}.".
|
|
|
|
format(batch_size, len(batch_size)))
|
|
|
|
batch_size = batch_size[1]
|
|
|
|
elif not isinstance(batch_size, six.integer_types):
|
|
|
|
raise TypeError("type(batch_size) shall be `int`, but received {}.".
|
|
|
|
format(type(batch_size).__name__))
|
|
|
|
|
|
|
|
new_shape = [batch_size] + list(self.shape)
|
|
|
|
self.shape = tuple(new_shape)
|
|
|
|
|
|
|
|
return self
|
|
|
|
|
|
|
|
def unbatch(self):
|
|
|
|
"""
|
|
|
|
Removes the first element of `shape`.
|
|
|
|
|
|
|
|
Returns:
|
|
|
|
The original InputSpec instance by removing the first element of `shape` .
|
|
|
|
|
|
|
|
Examples:
|
|
|
|
.. code-block:: python
|
|
|
|
|
|
|
|
from paddle.static import InputSpec
|
|
|
|
|
|
|
|
x_spec = InputSpec(shape=[4, 64], dtype='float32', name='x')
|
|
|
|
x_spec.unbatch()
|
|
|
|
print(x_spec) # InputSpec(shape=(64,), dtype=VarType.FP32, name=x)
|
|
|
|
|
|
|
|
"""
|
|
|
|
if len(self.shape) == 0:
|
|
|
|
raise ValueError(
|
|
|
|
"Not support to unbatch a InputSpec when len(shape) == 0.")
|
|
|
|
|
|
|
|
self.shape = self._verify(self.shape[1:])
|
|
|
|
return self
|
|
|
|
|
|
|
|
def _verify(self, shape):
|
|
|
|
"""
|
|
|
|
Verifies the input shape and modifies `None` into `-1`.
|
|
|
|
"""
|
|
|
|
if not isinstance(shape, (list, tuple)):
|
|
|
|
raise TypeError(
|
|
|
|
"Type of `shape` in InputSpec should be one of (tuple, list), but received {}.".
|
|
|
|
format(type(shape).__name__))
|
|
|
|
if len(shape) == 0:
|
|
|
|
raise ValueError(
|
|
|
|
"`shape` in InputSpec should contain at least 1 element, but received {}.".
|
|
|
|
format(shape))
|
|
|
|
|
|
|
|
for i, ele in enumerate(shape):
|
|
|
|
if ele is not None:
|
|
|
|
if not isinstance(ele, six.integer_types):
|
|
|
|
raise ValueError(
|
|
|
|
"shape[{}] should be an `int`, but received `{}`:{}.".
|
|
|
|
format(i, type(ele).__name__, ele))
|
|
|
|
if ele is None or ele < -1:
|
|
|
|
shape[i] = -1
|
|
|
|
|
|
|
|
return tuple(shape)
|
|
|
|
|
|
|
|
def __hash__(self):
|
|
|
|
# Note(Aurelius84): `name` is not considered as a field to compute hashkey.
|
|
|
|
# Because it's no need to generate a new program in following cases while using
|
|
|
|
# @paddle.jit.to_static.
|
|
|
|
#
|
|
|
|
# Case 1:
|
|
|
|
# foo(x_var)
|
|
|
|
# foo(y_var)
|
|
|
|
# x_var and y_var hold same shape and dtype, they should share a same program.
|
|
|
|
#
|
|
|
|
#
|
|
|
|
# Case 2:
|
|
|
|
# foo(x_var)
|
|
|
|
# foo(x_np) # x_np is a numpy.ndarray.
|
|
|
|
# x_var and x_np hold same shape and dtype, they should also share a same program.
|
|
|
|
return hash((tuple(self.shape), self.dtype))
|
|
|
|
|
|
|
|
def __eq__(self, other):
|
|
|
|
slots = ['shape', 'dtype', 'name']
|
|
|
|
return (type(self) is type(other) and all(
|
|
|
|
getattr(self, attr) == getattr(other, attr) for attr in slots))
|
|
|
|
|
|
|
|
def __ne__(self, other):
|
|
|
|
return not self == other
|