You can not select more than 25 topics
Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.
315 lines
10 KiB
315 lines
10 KiB
7 years ago
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||
7 years ago
|
#
|
||
7 years ago
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||
|
# you may not use this file except in compliance with the License.
|
||
|
# You may obtain a copy of the License at
|
||
7 years ago
|
#
|
||
7 years ago
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||
7 years ago
|
#
|
||
7 years ago
|
# Unless required by applicable law or agreed to in writing, software
|
||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||
|
# See the License for the specific language governing permissions and
|
||
|
# limitations under the License.
|
||
7 years ago
|
import contextlib
|
||
7 years ago
|
|
||
7 years ago
|
import numpy as np
|
||
|
import paddle.v2 as paddle
|
||
7 years ago
|
import paddle.v2.fluid as fluid
|
||
7 years ago
|
import paddle.v2.fluid.framework as framework
|
||
7 years ago
|
import paddle.v2.fluid.layers as pd
|
||
7 years ago
|
from paddle.v2.fluid.executor import Executor
|
||
7 years ago
|
import unittest
|
||
7 years ago
|
|
||
|
dict_size = 30000
|
||
|
source_dict_dim = target_dict_dim = dict_size
|
||
7 years ago
|
hidden_dim = 32
|
||
|
word_dim = 16
|
||
7 years ago
|
batch_size = 2
|
||
|
max_length = 8
|
||
7 years ago
|
topk_size = 50
|
||
|
trg_dic_size = 10000
|
||
7 years ago
|
beam_size = 2
|
||
7 years ago
|
|
||
7 years ago
|
decoder_size = hidden_dim
|
||
|
|
||
|
|
||
7 years ago
|
def encoder(is_sparse):
|
||
7 years ago
|
# encoder
|
||
7 years ago
|
src_word_id = pd.data(
|
||
7 years ago
|
name="src_word_id", shape=[1], dtype='int64', lod_level=1)
|
||
7 years ago
|
src_embedding = pd.embedding(
|
||
7 years ago
|
input=src_word_id,
|
||
|
size=[dict_size, word_dim],
|
||
|
dtype='float32',
|
||
7 years ago
|
is_sparse=is_sparse,
|
||
7 years ago
|
param_attr=fluid.ParamAttr(name='vemb'))
|
||
|
|
||
7 years ago
|
fc1 = pd.fc(input=src_embedding, size=hidden_dim * 4, act='tanh')
|
||
|
lstm_hidden0, lstm_0 = pd.dynamic_lstm(input=fc1, size=hidden_dim * 4)
|
||
|
encoder_out = pd.sequence_last_step(input=lstm_hidden0)
|
||
|
return encoder_out
|
||
|
|
||
7 years ago
|
|
||
7 years ago
|
def decoder_train(context, is_sparse):
|
||
7 years ago
|
# decoder
|
||
7 years ago
|
trg_language_word = pd.data(
|
||
7 years ago
|
name="target_language_word", shape=[1], dtype='int64', lod_level=1)
|
||
7 years ago
|
trg_embedding = pd.embedding(
|
||
7 years ago
|
input=trg_language_word,
|
||
|
size=[dict_size, word_dim],
|
||
|
dtype='float32',
|
||
7 years ago
|
is_sparse=is_sparse,
|
||
7 years ago
|
param_attr=fluid.ParamAttr(name='vemb'))
|
||
|
|
||
7 years ago
|
rnn = pd.DynamicRNN()
|
||
7 years ago
|
with rnn.block():
|
||
|
current_word = rnn.step_input(trg_embedding)
|
||
7 years ago
|
pre_state = rnn.memory(init=context)
|
||
|
current_state = pd.fc(input=[current_word, pre_state],
|
||
7 years ago
|
size=decoder_size,
|
||
|
act='tanh')
|
||
7 years ago
|
|
||
|
current_score = pd.fc(input=current_state,
|
||
|
size=target_dict_dim,
|
||
|
act='softmax')
|
||
|
rnn.update_memory(pre_state, current_state)
|
||
|
rnn.output(current_score)
|
||
7 years ago
|
|
||
|
return rnn()
|
||
7 years ago
|
|
||
|
|
||
7 years ago
|
def decoder_decode(context, is_sparse):
|
||
7 years ago
|
init_state = context
|
||
|
array_len = pd.fill_constant(shape=[1], dtype='int64', value=max_length)
|
||
7 years ago
|
counter = pd.zeros(shape=[1], dtype='int64', force_cpu=True)
|
||
7 years ago
|
|
||
|
# fill the first element with init_state
|
||
|
state_array = pd.create_array('float32')
|
||
|
pd.array_write(init_state, array=state_array, i=counter)
|
||
|
|
||
|
# ids, scores as memory
|
||
|
ids_array = pd.create_array('int64')
|
||
|
scores_array = pd.create_array('float32')
|
||
|
|
||
|
init_ids = pd.data(name="init_ids", shape=[1], dtype="int64", lod_level=2)
|
||
|
init_scores = pd.data(
|
||
|
name="init_scores", shape=[1], dtype="float32", lod_level=2)
|
||
|
|
||
|
pd.array_write(init_ids, array=ids_array, i=counter)
|
||
|
pd.array_write(init_scores, array=scores_array, i=counter)
|
||
|
|
||
|
cond = pd.less_than(x=counter, y=array_len)
|
||
|
|
||
|
while_op = pd.While(cond=cond)
|
||
|
with while_op.block():
|
||
|
pre_ids = pd.array_read(array=ids_array, i=counter)
|
||
|
pre_state = pd.array_read(array=state_array, i=counter)
|
||
|
pre_score = pd.array_read(array=scores_array, i=counter)
|
||
|
|
||
|
# expand the lod of pre_state to be the same with pre_score
|
||
|
pre_state_expanded = pd.sequence_expand(pre_state, pre_score)
|
||
|
|
||
|
pre_ids_emb = pd.embedding(
|
||
|
input=pre_ids,
|
||
|
size=[dict_size, word_dim],
|
||
|
dtype='float32',
|
||
7 years ago
|
is_sparse=is_sparse)
|
||
7 years ago
|
|
||
|
# use rnn unit to update rnn
|
||
|
current_state = pd.fc(input=[pre_ids_emb, pre_state_expanded],
|
||
|
size=decoder_size,
|
||
|
act='tanh')
|
||
|
|
||
|
# use score to do beam search
|
||
|
current_score = pd.fc(input=current_state,
|
||
|
size=target_dict_dim,
|
||
|
act='softmax')
|
||
|
topk_scores, topk_indices = pd.topk(current_score, k=50)
|
||
|
selected_ids, selected_scores = pd.beam_search(
|
||
|
pre_ids, topk_indices, topk_scores, beam_size, end_id=10, level=0)
|
||
|
|
||
|
pd.increment(x=counter, value=1, in_place=True)
|
||
|
|
||
|
# update the memories
|
||
|
pd.array_write(current_state, array=state_array, i=counter)
|
||
|
pd.array_write(selected_ids, array=ids_array, i=counter)
|
||
|
pd.array_write(selected_scores, array=scores_array, i=counter)
|
||
|
|
||
|
pd.less_than(x=counter, y=array_len, cond=cond)
|
||
|
|
||
|
translation_ids, translation_scores = pd.beam_search_decode(
|
||
|
ids=ids_array, scores=scores_array)
|
||
|
|
||
|
# return init_ids, init_scores
|
||
|
|
||
|
return translation_ids, translation_scores
|
||
|
|
||
|
|
||
|
def set_init_lod(data, lod, place):
|
||
7 years ago
|
res = fluid.LoDTensor()
|
||
7 years ago
|
res.set(data, place)
|
||
|
res.set_lod(lod)
|
||
|
return res
|
||
|
|
||
|
|
||
7 years ago
|
def to_lodtensor(data, place):
|
||
|
seq_lens = [len(seq) for seq in data]
|
||
|
cur_len = 0
|
||
|
lod = [cur_len]
|
||
|
for l in seq_lens:
|
||
|
cur_len += l
|
||
|
lod.append(cur_len)
|
||
|
flattened_data = np.concatenate(data, axis=0).astype("int64")
|
||
|
flattened_data = flattened_data.reshape([len(flattened_data), 1])
|
||
7 years ago
|
res = fluid.LoDTensor()
|
||
7 years ago
|
res.set(flattened_data, place)
|
||
|
res.set_lod([lod])
|
||
|
return res
|
||
|
|
||
|
|
||
7 years ago
|
def train_main(use_cuda, is_sparse):
|
||
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
||
|
return
|
||
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||
|
|
||
|
context = encoder(is_sparse)
|
||
|
rnn_out = decoder_train(context, is_sparse)
|
||
7 years ago
|
label = pd.data(
|
||
7 years ago
|
name="target_language_next_word", shape=[1], dtype='int64', lod_level=1)
|
||
7 years ago
|
cost = pd.cross_entropy(input=rnn_out, label=label)
|
||
|
avg_cost = pd.mean(x=cost)
|
||
7 years ago
|
|
||
|
optimizer = fluid.optimizer.Adagrad(learning_rate=1e-4)
|
||
|
optimizer.minimize(avg_cost)
|
||
7 years ago
|
|
||
|
train_data = paddle.batch(
|
||
|
paddle.reader.shuffle(
|
||
7 years ago
|
paddle.dataset.wmt14.train(dict_size), buf_size=1000),
|
||
7 years ago
|
batch_size=batch_size)
|
||
|
|
||
|
exe = Executor(place)
|
||
|
|
||
|
exe.run(framework.default_startup_program())
|
||
|
|
||
|
batch_id = 0
|
||
7 years ago
|
for pass_id in xrange(1):
|
||
7 years ago
|
for data in train_data():
|
||
|
word_data = to_lodtensor(map(lambda x: x[0], data), place)
|
||
7 years ago
|
trg_word = to_lodtensor(map(lambda x: x[1], data), place)
|
||
|
trg_word_next = to_lodtensor(map(lambda x: x[2], data), place)
|
||
7 years ago
|
outs = exe.run(framework.default_main_program(),
|
||
7 years ago
|
feed={
|
||
|
'src_word_id': word_data,
|
||
|
'target_language_word': trg_word,
|
||
|
'target_language_next_word': trg_word_next
|
||
|
},
|
||
|
fetch_list=[avg_cost])
|
||
|
avg_cost_val = np.array(outs[0])
|
||
|
print('pass_id=' + str(pass_id) + ' batch=' + str(batch_id) +
|
||
|
" avg_cost=" + str(avg_cost_val))
|
||
|
if batch_id > 3:
|
||
7 years ago
|
break
|
||
7 years ago
|
batch_id += 1
|
||
7 years ago
|
|
||
|
|
||
7 years ago
|
def decode_main(use_cuda, is_sparse):
|
||
|
if use_cuda and not fluid.core.is_compiled_with_cuda():
|
||
|
return
|
||
|
place = fluid.CUDAPlace(0) if use_cuda else fluid.CPUPlace()
|
||
|
|
||
|
context = encoder(is_sparse)
|
||
|
translation_ids, translation_scores = decoder_decode(context, is_sparse)
|
||
7 years ago
|
|
||
|
exe = Executor(place)
|
||
|
exe.run(framework.default_startup_program())
|
||
|
|
||
|
init_ids_data = np.array([1 for _ in range(batch_size)], dtype='int64')
|
||
|
init_scores_data = np.array(
|
||
|
[1. for _ in range(batch_size)], dtype='float32')
|
||
|
init_ids_data = init_ids_data.reshape((batch_size, 1))
|
||
|
init_scores_data = init_scores_data.reshape((batch_size, 1))
|
||
|
init_lod = [i for i in range(batch_size)] + [batch_size]
|
||
|
init_lod = [init_lod, init_lod]
|
||
|
|
||
|
train_data = paddle.batch(
|
||
|
paddle.reader.shuffle(
|
||
|
paddle.dataset.wmt14.train(dict_size), buf_size=1000),
|
||
|
batch_size=batch_size)
|
||
|
for _, data in enumerate(train_data()):
|
||
|
init_ids = set_init_lod(init_ids_data, init_lod, place)
|
||
|
init_scores = set_init_lod(init_scores_data, init_lod, place)
|
||
|
|
||
|
src_word_data = to_lodtensor(map(lambda x: x[0], data), place)
|
||
|
|
||
|
result_ids, result_scores = exe.run(
|
||
|
framework.default_main_program(),
|
||
|
feed={
|
||
|
'src_word_id': src_word_data,
|
||
|
'init_ids': init_ids,
|
||
|
'init_scores': init_scores
|
||
|
},
|
||
|
fetch_list=[translation_ids, translation_scores],
|
||
|
return_numpy=False)
|
||
|
print result_ids.lod()
|
||
|
break
|
||
|
|
||
|
|
||
7 years ago
|
class TestMachineTranslation(unittest.TestCase):
|
||
|
pass
|
||
|
|
||
|
|
||
|
@contextlib.contextmanager
|
||
|
def scope_prog_guard():
|
||
|
prog = fluid.Program()
|
||
|
startup_prog = fluid.Program()
|
||
|
scope = fluid.core.Scope()
|
||
|
with fluid.scope_guard(scope):
|
||
|
with fluid.program_guard(prog, startup_prog):
|
||
|
yield
|
||
|
|
||
|
|
||
|
def inject_test_train(use_cuda, is_sparse):
|
||
|
f_name = 'test_{0}_{1}_train'.format('cuda' if use_cuda else 'cpu', 'sparse'
|
||
|
if is_sparse else 'dense')
|
||
|
|
||
|
def f(*args):
|
||
|
with scope_prog_guard():
|
||
|
train_main(use_cuda, is_sparse)
|
||
|
|
||
|
setattr(TestMachineTranslation, f_name, f)
|
||
|
|
||
|
|
||
|
def inject_test_decode(use_cuda, is_sparse, decorator=None):
|
||
|
f_name = 'test_{0}_{1}_decode'.format('cuda'
|
||
|
if use_cuda else 'cpu', 'sparse'
|
||
|
if is_sparse else 'dense')
|
||
|
|
||
|
def f(*args):
|
||
|
with scope_prog_guard():
|
||
|
decode_main(use_cuda, is_sparse)
|
||
|
|
||
|
if decorator is not None:
|
||
|
f = decorator(f)
|
||
|
|
||
|
setattr(TestMachineTranslation, f_name, f)
|
||
|
|
||
|
|
||
|
for _use_cuda_ in (False, True):
|
||
|
for _is_sparse_ in (False, True):
|
||
|
inject_test_train(_use_cuda_, _is_sparse_)
|
||
|
|
||
|
for _use_cuda_ in (False, True):
|
||
|
for _is_sparse_ in (False, True):
|
||
|
|
||
|
_decorator_ = None
|
||
|
if _use_cuda_:
|
||
|
_decorator_ = unittest.skip(
|
||
|
reason='Beam Search does not support CUDA!')
|
||
|
|
||
|
inject_test_decode(
|
||
|
is_sparse=_is_sparse_, use_cuda=_use_cuda_, decorator=_decorator_)
|
||
|
|
||
7 years ago
|
if __name__ == '__main__':
|
||
7 years ago
|
unittest.main()
|