03 image classification (#5192)
* add batch_norm_layer * add img_conv_group layer and test * add check to Tensor.type() * forward can run * with backward * change label data time from int32 to int64 * refine code * follow commentfix-typo
parent
833d0ad0fe
commit
0049ce0479
@ -0,0 +1,75 @@
|
||||
import unittest
|
||||
|
||||
import paddle.v2.framework.layers as layers
|
||||
import paddle.v2.framework.nets as nets
|
||||
from paddle.v2.framework.framework import Program
|
||||
|
||||
|
||||
def conv_block(input,
|
||||
num_filter,
|
||||
groups,
|
||||
dropouts,
|
||||
program=None,
|
||||
init_program=None):
|
||||
return nets.img_conv_group(
|
||||
input=input,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
conv_num_filter=[num_filter] * groups,
|
||||
conv_filter_size=3,
|
||||
conv_act='relu',
|
||||
conv_with_batchnorm=True,
|
||||
conv_batchnorm_drop_rate=dropouts,
|
||||
pool_type='max',
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
|
||||
|
||||
class TestLayer(unittest.TestCase):
|
||||
def test_batch_norm_layer(self):
|
||||
program = Program()
|
||||
init_program = Program()
|
||||
images = layers.data(
|
||||
name='pixel',
|
||||
shape=[3, 48, 48],
|
||||
data_type='float32',
|
||||
program=program)
|
||||
layers.batch_norm(
|
||||
input=images, program=program, init_program=init_program)
|
||||
|
||||
#print str(program)
|
||||
|
||||
def test_dropout_layer(self):
|
||||
program = Program()
|
||||
init_program = Program()
|
||||
images = layers.data(
|
||||
name='pixel',
|
||||
shape=[3, 48, 48],
|
||||
data_type='float32',
|
||||
program=program)
|
||||
layers.dropout(
|
||||
x=images,
|
||||
dropout_prob=0.5,
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
|
||||
#print str(program)
|
||||
|
||||
def test_img_conv_group(self):
|
||||
program = Program()
|
||||
init_program = Program()
|
||||
|
||||
images = layers.data(
|
||||
name='pixel',
|
||||
shape=[3, 48, 48],
|
||||
data_type='float32',
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
conv1 = conv_block(images, 64, 2, [0.3, 0], program, init_program)
|
||||
conv2 = conv_block(conv1, 256, 3, [0.4, 0.4, 0], program, init_program)
|
||||
|
||||
# print str(program)
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
@ -0,0 +1,133 @@
|
||||
import paddle.v2 as paddle
|
||||
import paddle.v2.framework.layers as layers
|
||||
import paddle.v2.framework.nets as nets
|
||||
import paddle.v2.framework.core as core
|
||||
import paddle.v2.framework.optimizer as optimizer
|
||||
|
||||
from paddle.v2.framework.framework import Program, g_program
|
||||
from paddle.v2.framework.executor import Executor
|
||||
|
||||
import numpy as np
|
||||
|
||||
|
||||
def vgg16_bn_drop(input, program, init_program):
|
||||
def conv_block(input,
|
||||
num_filter,
|
||||
groups,
|
||||
dropouts,
|
||||
program=None,
|
||||
init_program=None):
|
||||
return nets.img_conv_group(
|
||||
input=input,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
conv_num_filter=[num_filter] * groups,
|
||||
conv_filter_size=3,
|
||||
conv_act='relu',
|
||||
conv_with_batchnorm=True,
|
||||
conv_batchnorm_drop_rate=dropouts,
|
||||
pool_type='max',
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
|
||||
conv1 = conv_block(input, 64, 2, [0.3, 0], program, init_program)
|
||||
conv2 = conv_block(conv1, 128, 2, [0.4, 0], program, init_program)
|
||||
conv3 = conv_block(conv2, 256, 3, [0.4, 0.4, 0], program, init_program)
|
||||
conv4 = conv_block(conv3, 512, 3, [0.4, 0.4, 0], program, init_program)
|
||||
conv5 = conv_block(conv4, 512, 3, [0.4, 0.4, 0], program, init_program)
|
||||
|
||||
drop = layers.dropout(
|
||||
x=conv5, dropout_prob=0.5, program=program, init_program=init_program)
|
||||
fc1 = layers.fc(input=drop,
|
||||
size=512,
|
||||
act=None,
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
reshape1 = layers.reshape(
|
||||
x=fc1,
|
||||
shape=list(fc1.shape + (1, 1)),
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
bn = layers.batch_norm(
|
||||
input=reshape1, act='relu', program=program, init_program=init_program)
|
||||
drop2 = layers.dropout(
|
||||
x=bn, dropout_prob=0.5, program=program, init_program=init_program)
|
||||
fc2 = layers.fc(input=drop2,
|
||||
size=512,
|
||||
act=None,
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
return fc2
|
||||
|
||||
|
||||
init_program = Program()
|
||||
program = Program()
|
||||
|
||||
classdim = 10
|
||||
data_shape = [3, 32, 32]
|
||||
|
||||
images = layers.data(
|
||||
name='pixel', shape=data_shape, data_type='float32', program=program)
|
||||
|
||||
label = layers.data(
|
||||
name='label',
|
||||
shape=[1],
|
||||
data_type='int64',
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
vgg_net = vgg16_bn_drop(images, program, init_program)
|
||||
predict = layers.fc(input=vgg_net,
|
||||
size=classdim,
|
||||
act='softmax',
|
||||
program=program,
|
||||
init_program=init_program)
|
||||
cost = layers.cross_entropy(
|
||||
input=predict, label=label, program=program, init_program=init_program)
|
||||
avg_cost = layers.mean(x=cost, program=program, init_program=init_program)
|
||||
|
||||
sgd_optimizer = optimizer.SGDOptimizer(learning_rate=0.001)
|
||||
opts = sgd_optimizer.minimize(avg_cost)
|
||||
|
||||
BATCH_SIZE = 128
|
||||
PASS_NUM = 1
|
||||
|
||||
train_reader = paddle.batch(
|
||||
paddle.reader.shuffle(
|
||||
paddle.dataset.cifar.train10(), buf_size=128 * 10),
|
||||
batch_size=BATCH_SIZE)
|
||||
|
||||
place = core.CPUPlace()
|
||||
exe = Executor(place)
|
||||
|
||||
exe.run(init_program, feed={}, fetch_list=[])
|
||||
|
||||
for pass_id in range(PASS_NUM):
|
||||
batch_id = 0
|
||||
for data in train_reader():
|
||||
img_data = np.array(map(lambda x: x[0].reshape(data_shape),
|
||||
data)).astype("float32")
|
||||
y_data = np.array(map(lambda x: x[1], data)).astype("int64")
|
||||
batch_size = 1
|
||||
for i in y_data.shape:
|
||||
batch_size = batch_size * i
|
||||
y_data = y_data.reshape([batch_size, 1])
|
||||
|
||||
tensor_img = core.LoDTensor()
|
||||
tensor_y = core.LoDTensor()
|
||||
tensor_img.set(img_data, place)
|
||||
tensor_y.set(y_data, place)
|
||||
|
||||
outs = exe.run(program,
|
||||
feed={"pixel": tensor_img,
|
||||
"label": tensor_y},
|
||||
fetch_list=[avg_cost])
|
||||
|
||||
loss = np.array(outs[0])
|
||||
# print("pass_id:" + str(pass_id) + " batch_id:" + str(batch_id) +
|
||||
# " loss:" + str(loss))
|
||||
batch_id = batch_id + 1
|
||||
|
||||
if batch_id > 1:
|
||||
# this model is slow, so if we can train two mini batch, we think it works properly.
|
||||
exit(0)
|
||||
exit(1)
|
Loading…
Reference in new issue