parent
0f4b218640
commit
01950ceb42
@ -0,0 +1,138 @@
|
||||
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
from __future__ import print_function
|
||||
|
||||
import numpy as np
|
||||
import argparse
|
||||
import time
|
||||
import math
|
||||
|
||||
import paddle
|
||||
import paddle.fluid as fluid
|
||||
import paddle.fluid.profiler as profiler
|
||||
from paddle.fluid import core
|
||||
import unittest
|
||||
from multiprocessing import Process
|
||||
import os
|
||||
import signal
|
||||
from functools import reduce
|
||||
from test_dist_base import TestDistRunnerBase, runtime_main
|
||||
import paddle.distributed.fleet as fleet
|
||||
|
||||
paddle.enable_static()
|
||||
|
||||
DTYPE = "float32"
|
||||
paddle.dataset.mnist.fetch()
|
||||
|
||||
# Fix seed for test
|
||||
fluid.default_startup_program().random_seed = 1
|
||||
fluid.default_main_program().random_seed = 1
|
||||
|
||||
|
||||
def cnn_model(data):
|
||||
conv_pool_1 = fluid.nets.simple_img_conv_pool(
|
||||
input=data,
|
||||
filter_size=5,
|
||||
num_filters=20,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
act="relu",
|
||||
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
|
||||
value=0.01)))
|
||||
conv_pool_2 = fluid.nets.simple_img_conv_pool(
|
||||
input=conv_pool_1,
|
||||
filter_size=5,
|
||||
num_filters=50,
|
||||
pool_size=2,
|
||||
pool_stride=2,
|
||||
act="relu",
|
||||
param_attr=fluid.ParamAttr(initializer=fluid.initializer.Constant(
|
||||
value=0.01)))
|
||||
|
||||
SIZE = 10
|
||||
input_shape = conv_pool_2.shape
|
||||
param_shape = [reduce(lambda a, b: a * b, input_shape[1:], 1)] + [SIZE]
|
||||
scale = (2.0 / (param_shape[0]**2 * SIZE))**0.5
|
||||
|
||||
predict = fluid.layers.fc(
|
||||
input=conv_pool_2,
|
||||
size=SIZE,
|
||||
act="softmax",
|
||||
param_attr=fluid.param_attr.ParamAttr(
|
||||
initializer=fluid.initializer.Constant(value=0.01)))
|
||||
return predict
|
||||
|
||||
|
||||
class TestDistMnist2x2(TestDistRunnerBase):
|
||||
def get_model(self, batch_size=2, use_dgc=False, dist_strategy=None):
|
||||
# Input data
|
||||
device_id = 0
|
||||
if dist_strategy:
|
||||
fleet.init(is_collective=True)
|
||||
with fluid.device_guard("gpu:0"):
|
||||
images = fluid.layers.data(
|
||||
name='pixel', shape=[1, 28, 28], dtype=DTYPE)
|
||||
label = fluid.layers.data(name='label', shape=[1], dtype='int64')
|
||||
|
||||
if dist_strategy:
|
||||
data_loader = fluid.io.DataLoader.from_generator(
|
||||
feed_list=[images, label],
|
||||
capacity=64,
|
||||
use_double_buffer=False,
|
||||
iterable=False)
|
||||
# Train program
|
||||
predict = cnn_model(images)
|
||||
with fluid.device_guard("gpu:0"):
|
||||
cost = fluid.layers.cross_entropy(input=predict, label=label)
|
||||
avg_cost = fluid.layers.mean(x=cost)
|
||||
|
||||
# Evaluator
|
||||
with fluid.device_guard("gpu:0"):
|
||||
batch_size_tensor = fluid.layers.create_tensor(dtype='int64')
|
||||
batch_acc = fluid.layers.accuracy(
|
||||
input=predict, label=label, total=batch_size_tensor)
|
||||
|
||||
inference_program = fluid.default_main_program().clone()
|
||||
base_lr = self.lr
|
||||
passes = [30, 60, 80, 90]
|
||||
steps_per_pass = 10
|
||||
bd = [steps_per_pass * p for p in passes]
|
||||
lr = [base_lr * (0.1**i) for i in range(len(bd) + 1)]
|
||||
lr_val = fluid.layers.piecewise_decay(boundaries=bd, values=lr)
|
||||
opt = fluid.optimizer.Momentum(learning_rate=lr_val, momentum=0.9)
|
||||
|
||||
# Reader
|
||||
train_reader = paddle.batch(
|
||||
paddle.dataset.mnist.test(), batch_size=batch_size)
|
||||
test_reader = paddle.batch(
|
||||
paddle.dataset.mnist.test(), batch_size=batch_size)
|
||||
|
||||
if dist_strategy:
|
||||
strategy = fleet.DistributedStrategy()
|
||||
strategy.pipeline = True
|
||||
dist_opt = fleet.distributed_optimizer(
|
||||
optimizer=opt, strategy=strategy)
|
||||
dist_opt.minimize(avg_cost)
|
||||
else:
|
||||
opt.minimize(avg_cost)
|
||||
|
||||
if dist_strategy:
|
||||
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict, data_loader
|
||||
else:
|
||||
return inference_program, avg_cost, train_reader, test_reader, batch_acc, predict
|
||||
|
||||
|
||||
if __name__ == "__main__":
|
||||
runtime_main(TestDistMnist2x2)
|
Loading…
Reference in new issue