parent
e9eee0de6a
commit
019dbf7f5f
@ -0,0 +1,100 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#include "mkldnn.hpp"
|
||||||
|
#include "paddle/fluid/framework/tensor.h"
|
||||||
|
#include "paddle/fluid/operators/quantize_op.h"
|
||||||
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using mkldnn::memory;
|
||||||
|
using mkldnn::primitive;
|
||||||
|
using mkldnn::reorder;
|
||||||
|
using platform::to_void_cast;
|
||||||
|
using Tensor = framework::Tensor;
|
||||||
|
using framework::DataLayout;
|
||||||
|
using mkldnn::stream;
|
||||||
|
using platform::GetMKLDNNFormat;
|
||||||
|
|
||||||
|
template <typename T>
|
||||||
|
class QuantOpKernel : public framework::OpKernel<T> {
|
||||||
|
public:
|
||||||
|
void Compute(const framework::ExecutionContext& ctx) const override {
|
||||||
|
auto* input = ctx.Input<Tensor>("Input");
|
||||||
|
auto scale_data = ctx.Attr<float>("Scale");
|
||||||
|
auto* output = ctx.Output<Tensor>("Output");
|
||||||
|
auto& dev_ctx =
|
||||||
|
ctx.template device_context<platform::MKLDNNDeviceContext>();
|
||||||
|
const auto& engine = dev_ctx.GetEngine();
|
||||||
|
|
||||||
|
std::vector<primitive> pipeline;
|
||||||
|
std::vector<int> src_tz = paddle::framework::vectorize2int(input->dims());
|
||||||
|
std::vector<int> dst_tz = paddle::framework::vectorize2int(output->dims());
|
||||||
|
|
||||||
|
const T* input_data = input->data<T>();
|
||||||
|
|
||||||
|
mkldnn::primitive_attr attri;
|
||||||
|
int mask = 0;
|
||||||
|
attri.set_output_scales(mask, {scale_data});
|
||||||
|
|
||||||
|
auto src_md = platform::MKLDNNMemDesc({src_tz}, memory::data_type::f32,
|
||||||
|
input->format());
|
||||||
|
auto src_pd = mkldnn::memory::primitive_desc(src_md, engine);
|
||||||
|
auto src_memory =
|
||||||
|
std::make_shared<mkldnn::memory>(src_pd, to_void_cast<T>(input_data));
|
||||||
|
std::shared_ptr<primitive::at> src_memory_p =
|
||||||
|
std::shared_ptr<primitive::at>(new primitive::at(*src_memory));
|
||||||
|
|
||||||
|
bool is_negative = ctx.Attr<bool>("is_negative_input");
|
||||||
|
mkldnn::memory::primitive_desc dst_pd;
|
||||||
|
std::shared_ptr<mkldnn::memory> dst_memory;
|
||||||
|
if (is_negative) {
|
||||||
|
int8_t* output_data = output->mutable_data<int8_t>(ctx.GetPlace());
|
||||||
|
auto dst_md = platform::MKLDNNMemDesc({dst_tz}, memory::data_type::s8,
|
||||||
|
memory::format::nhwc);
|
||||||
|
dst_pd = mkldnn::memory::primitive_desc(dst_md, engine);
|
||||||
|
dst_memory.reset(
|
||||||
|
new mkldnn::memory(dst_pd, to_void_cast<int8_t>(output_data)));
|
||||||
|
} else {
|
||||||
|
uint8_t* output_data = output->mutable_data<uint8_t>(ctx.GetPlace());
|
||||||
|
auto dst_md = platform::MKLDNNMemDesc({dst_tz}, memory::data_type::u8,
|
||||||
|
memory::format::nhwc);
|
||||||
|
dst_pd = mkldnn::memory::primitive_desc(dst_md, engine);
|
||||||
|
dst_memory.reset(
|
||||||
|
new mkldnn::memory(dst_pd, to_void_cast<uint8_t>(output_data)));
|
||||||
|
}
|
||||||
|
|
||||||
|
auto reorder_pd = std::shared_ptr<reorder::primitive_desc>(
|
||||||
|
new reorder::primitive_desc(src_pd, dst_pd, attri));
|
||||||
|
auto reorder_p = std::shared_ptr<reorder>(
|
||||||
|
new reorder(*reorder_pd, *src_memory_p, *dst_memory));
|
||||||
|
|
||||||
|
pipeline.push_back(*reorder_p);
|
||||||
|
stream(stream::kind::eager).submit(pipeline).wait();
|
||||||
|
|
||||||
|
output->set_layout(DataLayout::kMKLDNN);
|
||||||
|
output->set_format(GetMKLDNNFormat(*dst_memory));
|
||||||
|
}
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
// TODO(Xiaoli) Support FP32->S8 quantization.
|
||||||
|
|
||||||
|
REGISTER_OP_KERNEL(quantize, MKLDNN, ::paddle::platform::CPUPlace,
|
||||||
|
ops::QuantOpKernel<float>);
|
@ -0,0 +1,47 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
*
|
||||||
|
* Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
* you may not use this file except in compliance with the License.
|
||||||
|
* You may obtain a copy of the License at
|
||||||
|
*
|
||||||
|
* http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
*
|
||||||
|
* Unless required by applicable law or agreed to in writing, software
|
||||||
|
* distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
* WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
* See the License for the specific language governing permissions and
|
||||||
|
* limitations under the License. */
|
||||||
|
|
||||||
|
#include "paddle/fluid/operators/quantize_op.h"
|
||||||
|
#ifdef PADDLE_WITH_MKLDNN
|
||||||
|
#include "paddle/fluid/platform/mkldnn_helper.h"
|
||||||
|
#endif
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
framework::OpKernelType QuantOp::GetExpectedKernelType(
|
||||||
|
const framework::ExecutionContext& ctx) const {
|
||||||
|
framework::LibraryType library_ = framework::LibraryType::kMKLDNN;
|
||||||
|
framework::DataLayout layout_ = framework::DataLayout::kMKLDNN;
|
||||||
|
|
||||||
|
return framework::OpKernelType(ctx.Input<Tensor>("Input")->type(),
|
||||||
|
ctx.GetPlace(), layout_, library_);
|
||||||
|
}
|
||||||
|
|
||||||
|
void QuantOpMaker::Make() {
|
||||||
|
AddInput("Input", "input data");
|
||||||
|
AddOutput("Output", "output data");
|
||||||
|
AddAttr<bool>("is_negative_input",
|
||||||
|
"(bool, default false) Only used in mkldnn INT8 kernel")
|
||||||
|
.SetDefault(false);
|
||||||
|
AddAttr<float>("Scale", "scale data").SetDefault({1.0f});
|
||||||
|
AddComment(R"DOC(This op will quantize data from FP32 to INT8)DOC");
|
||||||
|
}
|
||||||
|
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
||||||
|
namespace ops = paddle::operators;
|
||||||
|
|
||||||
|
REGISTER_OPERATOR(quantize, ops::QuantOp, ops::QuantOpMaker,
|
||||||
|
paddle::framework::DefaultGradOpDescMaker<true>);
|
@ -0,0 +1,46 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
|
||||||
|
#pragma once
|
||||||
|
|
||||||
|
#include <string>
|
||||||
|
#include <vector>
|
||||||
|
#include "paddle/fluid/framework/op_registry.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
namespace operators {
|
||||||
|
|
||||||
|
using framework::OpKernelType;
|
||||||
|
using framework::Tensor;
|
||||||
|
|
||||||
|
class QuantOp : public framework::OperatorWithKernel {
|
||||||
|
public:
|
||||||
|
using framework::OperatorWithKernel::OperatorWithKernel;
|
||||||
|
|
||||||
|
void InferShape(framework::InferShapeContext* ctx) const override {
|
||||||
|
ctx->SetOutputDim("Output", ctx->GetInputDim("Input"));
|
||||||
|
ctx->ShareLoD("Input", /*->*/ "Output");
|
||||||
|
}
|
||||||
|
|
||||||
|
protected:
|
||||||
|
framework::OpKernelType GetExpectedKernelType(
|
||||||
|
const framework::ExecutionContext& ctx) const override;
|
||||||
|
};
|
||||||
|
|
||||||
|
class QuantOpMaker : public framework::OpProtoAndCheckerMaker {
|
||||||
|
public:
|
||||||
|
void Make() override;
|
||||||
|
};
|
||||||
|
} // namespace operators
|
||||||
|
} // namespace paddle
|
@ -0,0 +1,76 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserved.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
from __future__ import print_function
|
||||||
|
|
||||||
|
import unittest
|
||||||
|
import numpy as np
|
||||||
|
from op_test import OpTest
|
||||||
|
|
||||||
|
|
||||||
|
class TestQuantizeOp(OpTest):
|
||||||
|
def setUp(self):
|
||||||
|
self.op_type = 'quantize'
|
||||||
|
self.scale = 2.0
|
||||||
|
self.input_size = [1, 1, 5, 5] #Naive nChw16c
|
||||||
|
self.is_negative = False
|
||||||
|
self.set_scale()
|
||||||
|
self.set_is_negative()
|
||||||
|
|
||||||
|
if self.is_negative:
|
||||||
|
input = (100 * np.random.random_sample(self.input_size) - 50
|
||||||
|
).astype('float32')
|
||||||
|
output = np.round(input * self.scale).astype('int8')
|
||||||
|
else:
|
||||||
|
input = (100 *
|
||||||
|
np.random.random_sample(self.input_size)).astype('float32')
|
||||||
|
output = np.round(input * self.scale).astype('uint8')
|
||||||
|
|
||||||
|
self.inputs = {'Input': OpTest.np_dtype_to_fluid_dtype(input)}
|
||||||
|
|
||||||
|
self.outputs = {'Output': output}
|
||||||
|
|
||||||
|
self.attrs = {
|
||||||
|
'Scale': self.scale,
|
||||||
|
'is_negative_input': self.is_negative
|
||||||
|
}
|
||||||
|
|
||||||
|
def test_check_output(self):
|
||||||
|
self.check_output()
|
||||||
|
|
||||||
|
def set_scale(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
def set_is_negative(self):
|
||||||
|
pass
|
||||||
|
|
||||||
|
|
||||||
|
class TestQuantizeOp1(TestQuantizeOp):
|
||||||
|
def set_scale(self):
|
||||||
|
self.scale = 1.5
|
||||||
|
|
||||||
|
def set_is_negative(self):
|
||||||
|
self.is_nagative = True
|
||||||
|
|
||||||
|
|
||||||
|
class TestQuantizeOp2(TestQuantizeOp):
|
||||||
|
def set_scale(self):
|
||||||
|
self.scale = 0.1
|
||||||
|
|
||||||
|
def set_is_negative(self):
|
||||||
|
self.is_nagative = False
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
unittest.main()
|
Loading…
Reference in new issue