Adding distributed training for dynamic_lstm (#7903)
parent
9b6387e7ae
commit
0531edf9da
@ -0,0 +1,135 @@
|
|||||||
|
# Copyright (c) 2018 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
#
|
||||||
|
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
# you may not use this file except in compliance with the License.
|
||||||
|
# You may obtain a copy of the License at
|
||||||
|
#
|
||||||
|
# http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
#
|
||||||
|
# Unless required by applicable law or agreed to in writing, software
|
||||||
|
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
# See the License for the specific language governing permissions and
|
||||||
|
# limitations under the License.
|
||||||
|
|
||||||
|
import numpy as np
|
||||||
|
import os
|
||||||
|
import paddle.v2 as paddle
|
||||||
|
import paddle.v2.fluid as fluid
|
||||||
|
|
||||||
|
|
||||||
|
def stacked_lstm_net(data,
|
||||||
|
label,
|
||||||
|
input_dim,
|
||||||
|
class_dim=2,
|
||||||
|
emb_dim=128,
|
||||||
|
hid_dim=512,
|
||||||
|
stacked_num=3):
|
||||||
|
assert stacked_num % 2 == 1
|
||||||
|
|
||||||
|
emb = fluid.layers.embedding(input=data, size=[input_dim, emb_dim])
|
||||||
|
# add bias attr
|
||||||
|
|
||||||
|
# TODO(qijun) linear act
|
||||||
|
fc1 = fluid.layers.fc(input=emb, size=hid_dim)
|
||||||
|
lstm1, cell1 = fluid.layers.dynamic_lstm(input=fc1, size=hid_dim)
|
||||||
|
|
||||||
|
inputs = [fc1, lstm1]
|
||||||
|
|
||||||
|
for i in range(2, stacked_num + 1):
|
||||||
|
fc = fluid.layers.fc(input=inputs, size=hid_dim)
|
||||||
|
lstm, cell = fluid.layers.dynamic_lstm(
|
||||||
|
input=fc, size=hid_dim, is_reverse=(i % 2) == 0)
|
||||||
|
inputs = [fc, lstm]
|
||||||
|
|
||||||
|
fc_last = fluid.layers.sequence_pool(input=inputs[0], pool_type='max')
|
||||||
|
lstm_last = fluid.layers.sequence_pool(input=inputs[1], pool_type='max')
|
||||||
|
|
||||||
|
prediction = fluid.layers.fc(input=[fc_last, lstm_last],
|
||||||
|
size=class_dim,
|
||||||
|
act='softmax')
|
||||||
|
cost = fluid.layers.cross_entropy(input=prediction, label=label)
|
||||||
|
avg_cost = fluid.layers.mean(x=cost)
|
||||||
|
adam_optimizer = fluid.optimizer.Adam(learning_rate=0.002)
|
||||||
|
optimize_ops, params_grads = adam_optimizer.minimize(avg_cost)
|
||||||
|
accuracy = fluid.evaluator.Accuracy(input=prediction, label=label)
|
||||||
|
return avg_cost, accuracy, accuracy.metrics[0], optimize_ops, params_grads
|
||||||
|
|
||||||
|
|
||||||
|
def to_lodtensor(data, place):
|
||||||
|
seq_lens = [len(seq) for seq in data]
|
||||||
|
cur_len = 0
|
||||||
|
lod = [cur_len]
|
||||||
|
for l in seq_lens:
|
||||||
|
cur_len += l
|
||||||
|
lod.append(cur_len)
|
||||||
|
flattened_data = np.concatenate(data, axis=0).astype("int64")
|
||||||
|
flattened_data = flattened_data.reshape([len(flattened_data), 1])
|
||||||
|
res = fluid.LoDTensor()
|
||||||
|
res.set(flattened_data, place)
|
||||||
|
res.set_lod([lod])
|
||||||
|
return res
|
||||||
|
|
||||||
|
|
||||||
|
def main():
|
||||||
|
BATCH_SIZE = 100
|
||||||
|
PASS_NUM = 5
|
||||||
|
|
||||||
|
word_dict = paddle.dataset.imdb.word_dict()
|
||||||
|
print "loaded word dict successfully"
|
||||||
|
dict_dim = len(word_dict)
|
||||||
|
class_dim = 2
|
||||||
|
|
||||||
|
data = fluid.layers.data(
|
||||||
|
name="words", shape=[1], dtype="int64", lod_level=1)
|
||||||
|
label = fluid.layers.data(name="label", shape=[1], dtype="int64")
|
||||||
|
cost, accuracy, acc_out, optimize_ops, params_grads = stacked_lstm_net(
|
||||||
|
data, label, input_dim=dict_dim, class_dim=class_dim)
|
||||||
|
|
||||||
|
train_data = paddle.batch(
|
||||||
|
paddle.reader.shuffle(
|
||||||
|
paddle.dataset.imdb.train(word_dict), buf_size=1000),
|
||||||
|
batch_size=BATCH_SIZE)
|
||||||
|
place = fluid.CPUPlace()
|
||||||
|
exe = fluid.Executor(place)
|
||||||
|
feeder = fluid.DataFeeder(feed_list=[data, label], place=place)
|
||||||
|
|
||||||
|
t = fluid.DistributeTranspiler()
|
||||||
|
# all parameter server endpoints list for spliting parameters
|
||||||
|
pserver_endpoints = os.getenv("PSERVERS")
|
||||||
|
# server endpoint for current node
|
||||||
|
current_endpoint = os.getenv("SERVER_ENDPOINT")
|
||||||
|
# run as trainer or parameter server
|
||||||
|
training_role = os.getenv(
|
||||||
|
"TRAINING_ROLE", "TRAINER") # get the training role: trainer/pserver
|
||||||
|
t.transpile(
|
||||||
|
optimize_ops, params_grads, pservers=pserver_endpoints, trainers=2)
|
||||||
|
|
||||||
|
if training_role == "PSERVER":
|
||||||
|
if not current_endpoint:
|
||||||
|
print("need env SERVER_ENDPOINT")
|
||||||
|
exit(1)
|
||||||
|
pserver_prog = t.get_pserver_program(current_endpoint)
|
||||||
|
pserver_startup = t.get_startup_program(current_endpoint, pserver_prog)
|
||||||
|
exe.run(pserver_startup)
|
||||||
|
exe.run(pserver_prog)
|
||||||
|
elif training_role == "TRAINER":
|
||||||
|
exe.run(fluid.default_startup_program())
|
||||||
|
trainer_prog = t.get_trainer_program()
|
||||||
|
for pass_id in xrange(PASS_NUM):
|
||||||
|
accuracy.reset(exe)
|
||||||
|
for data in train_data():
|
||||||
|
cost_val, acc_val = exe.run(trainer_prog,
|
||||||
|
feed=feeder.feed(data),
|
||||||
|
fetch_list=[cost, acc_out])
|
||||||
|
pass_acc = accuracy.eval(exe)
|
||||||
|
print("cost=" + str(cost_val) + " acc=" + str(acc_val) +
|
||||||
|
" pass_acc=" + str(pass_acc))
|
||||||
|
if cost_val < 1.0 and acc_val > 0.8:
|
||||||
|
exit(0)
|
||||||
|
else:
|
||||||
|
print("environment var TRAINER_ROLE should be TRAINER os PSERVER")
|
||||||
|
|
||||||
|
|
||||||
|
if __name__ == '__main__':
|
||||||
|
main()
|
Loading…
Reference in new issue