cblas_new
parent
2acb84fe70
commit
0672d330a3
@ -0,0 +1,92 @@
|
||||
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||
|
||||
Licensed under the Apache License, Version 2.0 (the "License");
|
||||
you may not use this file except in compliance with the License.
|
||||
You may obtain a copy of the License at
|
||||
|
||||
http://www.apache.org/licenses/LICENSE-2.0
|
||||
|
||||
Unless required by applicable law or agreed to in writing, software
|
||||
distributed under the License is distributed on an "AS IS" BASIS,
|
||||
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
See the License for the specific language governing permissions and
|
||||
limitations under the License. */
|
||||
|
||||
#pragma once
|
||||
|
||||
namespace paddle {
|
||||
|
||||
/* The storage format of the coldata in the Im2ColFunctor and Col2ImFunctor. */
|
||||
enum ColFormat { kCFO = 0, kOCF = 1 };
|
||||
|
||||
/*
|
||||
* \brief Converts the image data of three dimensions(CHW) into a colData of
|
||||
* five dimensions in the Im2ColFunctor calculation,
|
||||
* And in the Col2ImFunctor calculation, it is reversed.
|
||||
*
|
||||
* \param imData Image data of NCHW format.
|
||||
* The shape of imData is:
|
||||
* [inputChannels, inputHeight, inputWidth].
|
||||
* \param colData colData data.
|
||||
*
|
||||
* If the template argument Format is kCFO, the shape of colData is:
|
||||
* [inputChannels, filterHeight, filterWidth, outputHeight, outputWidth]
|
||||
* So, it is easy to reshape into a convolution matrix for convolution
|
||||
* calculation based on matrix multiplication.
|
||||
* The shape of convolution matrix is [height, width], where the height is equal
|
||||
* inputChannels * filterHeight * filterWidth, and the width is equal
|
||||
* outputHeight * outputWidth.
|
||||
*
|
||||
* Reshape:
|
||||
* shape of colData shape of sequence
|
||||
* [inputChannels,
|
||||
* filterHeight,
|
||||
* filterWidth, ======> [seqLength, stepSize]
|
||||
* outputHeight,
|
||||
* outputWidth]
|
||||
*
|
||||
* If the template argument Format is kOCF, the shape of colData is:
|
||||
* [outputHeight, outputWidth, inputChannels, filterHeight, filterWidth]
|
||||
* So, it is easy to reshape into a sequence matrix for rnn calculation.
|
||||
* The shape of sequence matrix is [seqLength, stepSize], where the seqLength
|
||||
* is equal outputHeight * outputWidth, and the stepSize is equal
|
||||
* inputChannels * filterHeight * filterWidth.
|
||||
*
|
||||
* Reshape:
|
||||
* shape of colData shape of sequence
|
||||
* [outputHeight,
|
||||
* outputWidth,
|
||||
* inputChannels, ======> [seqLength, stepSize]
|
||||
* filterHeight,
|
||||
* filterWidth]
|
||||
*
|
||||
* \note The caller needs to ensure that imShape.inputChannels is equal to
|
||||
* colShape.inputChannels.
|
||||
*/
|
||||
template <ColFormat Format, DeviceType Device, class T>
|
||||
class Im2ColFunctor {
|
||||
public:
|
||||
void operator()(const T* imData,
|
||||
const TensorShape& imShape,
|
||||
T* colData,
|
||||
const TensorShape& colShape,
|
||||
int strideHeight,
|
||||
int strideWidth,
|
||||
int paddingHeight,
|
||||
int paddingWidth);
|
||||
};
|
||||
|
||||
template <ColFormat Format, DeviceType Device, class T>
|
||||
class Col2ImFunctor {
|
||||
public:
|
||||
void operator()(T* imData,
|
||||
const TensorShape& imShape,
|
||||
const T* colData,
|
||||
const TensorShape& colShape,
|
||||
int strideHeight,
|
||||
int strideWidth,
|
||||
int paddingHeight,
|
||||
int paddingWidth);
|
||||
};
|
||||
|
||||
} // namespace paddle
|
Loading…
Reference in new issue