add Conv2D/Conv2DTranspose/Conv3D/Conv3DTranspose in paddle.nn.layer (#23488)
* add Conv/ConvTranspose layers in paddle.nn.layer, test=develop * add example code in docstring, test=develop * update unittests to work with test_runner, test=developrevert-23830-2.0-beta
parent
66cae9157e
commit
078dd05b73
@ -0,0 +1,247 @@
|
||||
# Copyright (c) 2020 PaddlePaddle Authors. All Rights Reserved.
|
||||
#
|
||||
# Licensed under the Apache License, Version 2.0 (the "License");
|
||||
# you may not use this file except in compliance with the License.
|
||||
# You may obtain a copy of the License at
|
||||
#
|
||||
# http://www.apache.org/licenses/LICENSE-2.0
|
||||
#
|
||||
# Unless required by applicable law or agreed to in writing, software
|
||||
# distributed under the License is distributed on an "AS IS" BASIS,
|
||||
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||
# See the License for the specific language governing permissions and
|
||||
# limitations under the License.
|
||||
|
||||
import numpy as np
|
||||
from paddle import fluid, nn
|
||||
import paddle.fluid.dygraph as dg
|
||||
import paddle.nn.functional as F
|
||||
import paddle.fluid.initializer as I
|
||||
import unittest
|
||||
|
||||
|
||||
class Conv2DTestCase(unittest.TestCase):
|
||||
def __init__(self,
|
||||
methodName='runTest',
|
||||
batch_size=4,
|
||||
spartial_shape=(16, 16),
|
||||
num_channels=6,
|
||||
num_filters=8,
|
||||
filter_size=3,
|
||||
padding=0,
|
||||
stride=1,
|
||||
dilation=1,
|
||||
groups=1,
|
||||
act=None,
|
||||
no_bias=False,
|
||||
use_cudnn=True,
|
||||
data_format="NCHW",
|
||||
dtype="float32"):
|
||||
super(Conv2DTestCase, self).__init__(methodName)
|
||||
self.batch_size = batch_size
|
||||
self.num_channels = num_channels
|
||||
self.num_filters = num_filters
|
||||
self.spartial_shape = spartial_shape
|
||||
self.filter_size = filter_size
|
||||
|
||||
self.padding = padding
|
||||
self.stride = stride
|
||||
self.dilation = dilation
|
||||
self.groups = groups
|
||||
self.act = act
|
||||
self.no_bias = no_bias
|
||||
self.use_cudnn = use_cudnn
|
||||
self.data_format = data_format
|
||||
self.dtype = dtype
|
||||
|
||||
def setUp(self):
|
||||
self.channel_last = self.data_format == "NHWC"
|
||||
if self.channel_last:
|
||||
input_shape = (self.batch_size, ) + self.spartial_shape + (
|
||||
self.num_channels, )
|
||||
else:
|
||||
input_shape = (self.batch_size, self.num_channels
|
||||
) + self.spartial_shape
|
||||
self.input = np.random.randn(*input_shape).astype(self.dtype)
|
||||
|
||||
if isinstance(self.filter_size, int):
|
||||
filter_size = [self.filter_size] * 2
|
||||
else:
|
||||
filter_size = self.filter_size
|
||||
self.weight_shape = weight_shape = (self.num_filters, self.num_channels
|
||||
// self.groups) + tuple(filter_size)
|
||||
self.weight = np.random.uniform(
|
||||
-1, 1, size=weight_shape).astype(self.dtype)
|
||||
if not self.no_bias:
|
||||
self.bias = np.random.uniform(
|
||||
-1, 1, size=(self.num_filters, )).astype(self.dtype)
|
||||
else:
|
||||
self.bias = None
|
||||
|
||||
def fluid_layer(self, place):
|
||||
main = fluid.Program()
|
||||
start = fluid.Program()
|
||||
with fluid.unique_name.guard():
|
||||
with fluid.program_guard(main, start):
|
||||
input_shape = (-1, -1, -1,self.num_channels) \
|
||||
if self.channel_last else (-1, self.num_channels, -1, -1)
|
||||
x_var = fluid.data("input", input_shape, dtype=self.dtype)
|
||||
weight_attr = I.NumpyArrayInitializer(self.weight)
|
||||
if self.bias is None:
|
||||
bias_attr = False
|
||||
else:
|
||||
bias_attr = I.NumpyArrayInitializer(self.bias)
|
||||
y_var = fluid.layers.conv2d(
|
||||
x_var,
|
||||
self.num_filters,
|
||||
self.filter_size,
|
||||
padding=self.padding,
|
||||
stride=self.stride,
|
||||
dilation=self.dilation,
|
||||
groups=self.groups,
|
||||
param_attr=weight_attr,
|
||||
bias_attr=bias_attr,
|
||||
use_cudnn=self.use_cudnn,
|
||||
act=self.act,
|
||||
data_format=self.data_format)
|
||||
feed_dict = {"input": self.input}
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(start)
|
||||
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
|
||||
return y_np
|
||||
|
||||
def functional(self, place):
|
||||
main = fluid.Program()
|
||||
start = fluid.Program()
|
||||
with fluid.unique_name.guard():
|
||||
with fluid.program_guard(main, start):
|
||||
input_shape = (-1, -1, -1,self.num_channels) \
|
||||
if self.channel_last else (-1, self.num_channels, -1, -1)
|
||||
x_var = fluid.data("input", input_shape, dtype=self.dtype)
|
||||
w_var = fluid.data(
|
||||
"weight", self.weight_shape, dtype=self.dtype)
|
||||
b_var = fluid.data(
|
||||
"bias", (self.num_filters, ), dtype=self.dtype)
|
||||
y_var = F.conv2d(
|
||||
x_var,
|
||||
w_var,
|
||||
b_var if not self.no_bias else None,
|
||||
padding=self.padding,
|
||||
stride=self.stride,
|
||||
dilation=self.dilation,
|
||||
groups=self.groups,
|
||||
act=self.act,
|
||||
use_cudnn=self.use_cudnn,
|
||||
data_format=self.data_format)
|
||||
feed_dict = {"input": self.input, "weight": self.weight}
|
||||
if self.bias is not None:
|
||||
feed_dict["bias"] = self.bias
|
||||
exe = fluid.Executor(place)
|
||||
exe.run(start)
|
||||
y_np, = exe.run(main, feed=feed_dict, fetch_list=[y_var])
|
||||
return y_np
|
||||
|
||||
def paddle_nn_layer(self):
|
||||
x_var = dg.to_variable(self.input)
|
||||
conv = nn.Conv2D(
|
||||
self.num_channels,
|
||||
self.num_filters,
|
||||
self.filter_size,
|
||||
padding=self.padding,
|
||||
stride=self.stride,
|
||||
dilation=self.dilation,
|
||||
groups=self.groups,
|
||||
act=self.act,
|
||||
use_cudnn=self.use_cudnn,
|
||||
data_format=self.data_format,
|
||||
dtype=self.dtype)
|
||||
conv.weight.set_value(self.weight)
|
||||
if not self.no_bias:
|
||||
conv.bias.set_value(self.bias)
|
||||
y_var = conv(x_var)
|
||||
y_np = y_var.numpy()
|
||||
return y_np
|
||||
|
||||
def _test_equivalence(self, place):
|
||||
place = fluid.CPUPlace()
|
||||
result1 = self.fluid_layer(place)
|
||||
result2 = self.functional(place)
|
||||
with dg.guard(place):
|
||||
result3 = self.paddle_nn_layer()
|
||||
np.testing.assert_array_almost_equal(result1, result2)
|
||||
np.testing.assert_array_almost_equal(result2, result3)
|
||||
|
||||
def runTest(self):
|
||||
place = fluid.CPUPlace()
|
||||
self._test_equivalence(place)
|
||||
|
||||
if fluid.core.is_compiled_with_cuda():
|
||||
place = fluid.CUDAPlace(0)
|
||||
self._test_equivalence(place)
|
||||
|
||||
|
||||
class Conv2DErrorTestCase(Conv2DTestCase):
|
||||
def runTest(self):
|
||||
place = fluid.CPUPlace()
|
||||
with dg.guard(place):
|
||||
with self.assertRaises(ValueError):
|
||||
self.paddle_nn_layer()
|
||||
|
||||
|
||||
def add_cases(suite):
|
||||
suite.addTest(Conv2DTestCase(methodName='runTest'))
|
||||
suite.addTest(
|
||||
Conv2DTestCase(
|
||||
methodName='runTest', stride=[1, 2], dilation=2))
|
||||
suite.addTest(
|
||||
Conv2DTestCase(
|
||||
methodName='runTest', stride=2, dilation=(2, 1)))
|
||||
suite.addTest(
|
||||
Conv2DTestCase(
|
||||
methodName='runTest', padding="same", no_bias=True, act="sigmoid"))
|
||||
suite.addTest(
|
||||
Conv2DTestCase(
|
||||
methodName='runTest', filter_size=(3, 3), padding='valid'))
|
||||
suite.addTest(Conv2DTestCase(methodName='runTest', padding=(2, 3)))
|
||||
suite.addTest(Conv2DTestCase(methodName='runTest', padding=[1, 2, 2, 1]))
|
||||
suite.addTest(
|
||||
Conv2DTestCase(
|
||||
methodName='runTest', padding=[[0, 0], [0, 0], [1, 2], [2, 1]]))
|
||||
suite.addTest(Conv2DTestCase(methodName='runTest', data_format="NHWC"))
|
||||
suite.addTest(
|
||||
Conv2DTestCase(
|
||||
methodName='runTest',
|
||||
data_format="NHWC",
|
||||
padding=[[0, 0], [1, 1], [2, 2], [0, 0]]))
|
||||
suite.addTest(
|
||||
Conv2DTestCase(
|
||||
methodName='runTest', groups=2, padding="valid"))
|
||||
suite.addTest(
|
||||
Conv2DTestCase(
|
||||
methodName='runTest',
|
||||
num_filters=6,
|
||||
num_channels=3,
|
||||
groups=3,
|
||||
use_cudnn=False,
|
||||
act="sigmoid",
|
||||
padding="valid"))
|
||||
|
||||
|
||||
def add_error_cases(suite):
|
||||
suite.addTest(
|
||||
Conv2DErrorTestCase(
|
||||
methodName='runTest', use_cudnn="not_valid"))
|
||||
suite.addTest(
|
||||
Conv2DErrorTestCase(
|
||||
methodName='runTest', num_channels=5, groups=2))
|
||||
|
||||
|
||||
def load_tests(loader, standard_tests, pattern):
|
||||
suite = unittest.TestSuite()
|
||||
add_cases(suite)
|
||||
add_error_cases(suite)
|
||||
return suite
|
||||
|
||||
|
||||
if __name__ == '__main__':
|
||||
unittest.main()
|
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
File diff suppressed because it is too large
Load Diff
Loading…
Reference in new issue