parent
b95834dc0c
commit
0b080a42da
@ -0,0 +1,130 @@
|
|||||||
|
/* Copyright (c) 2016 PaddlePaddle Authors. All Rights Reserve.
|
||||||
|
|
||||||
|
Licensed under the Apache License, Version 2.0 (the "License");
|
||||||
|
you may not use this file except in compliance with the License.
|
||||||
|
You may obtain a copy of the License at
|
||||||
|
|
||||||
|
http://www.apache.org/licenses/LICENSE-2.0
|
||||||
|
|
||||||
|
Unless required by applicable law or agreed to in writing, software
|
||||||
|
distributed under the License is distributed on an "AS IS" BASIS,
|
||||||
|
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
|
||||||
|
See the License for the specific language governing permissions and
|
||||||
|
limitations under the License. */
|
||||||
|
#pragma once
|
||||||
|
#include <gflags/gflags.h>
|
||||||
|
#include "Layer.h"
|
||||||
|
#include "SequenceToBatch.h"
|
||||||
|
#include "paddle/utils/Stat.h"
|
||||||
|
|
||||||
|
namespace paddle {
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief RecurrentLayer takes 1 input layer. The output size is the same with
|
||||||
|
* input layer.
|
||||||
|
* For each sequence [start, end] it performs the following computation:
|
||||||
|
* \f[
|
||||||
|
* out_{i} = act(in_{i}) \ \ \text{for} \ i = start \\
|
||||||
|
* out_{i} = act(in_{i} + out_{i-1} * W) \ \ \text{for} \ start < i <= end
|
||||||
|
*
|
||||||
|
* \f]
|
||||||
|
* If reversed is true, the order is reversed:
|
||||||
|
* \f[
|
||||||
|
* out_{i} = act(in_{i}) \ \ \text{for} \ i = end \\
|
||||||
|
* out_{i} = act(in_{i} + out_{i+1} * W) \ \ \text{for} \ start <= i < end
|
||||||
|
* \f]
|
||||||
|
* There are two methods to calculate rnn. One way is to compute rnn one
|
||||||
|
* sequence by one sequence. The other way is to reorganize the input
|
||||||
|
* into batches, then compute rnn one batch by one batch. Users can select
|
||||||
|
* them by rnn_use_batch flag.
|
||||||
|
*/
|
||||||
|
|
||||||
|
class RecurrentLayer : public Layer {
|
||||||
|
public:
|
||||||
|
explicit RecurrentLayer(const LayerConfig& config) : Layer(config) {}
|
||||||
|
|
||||||
|
bool init(const LayerMap& layerMap,
|
||||||
|
const ParameterMap& parameterMap) override;
|
||||||
|
|
||||||
|
void forward(PassType passType) override;
|
||||||
|
|
||||||
|
void backward(const UpdateCallback& callback) override;
|
||||||
|
|
||||||
|
void resetState() override;
|
||||||
|
|
||||||
|
void setState(LayerStatePtr state) override;
|
||||||
|
|
||||||
|
LayerStatePtr getState() override;
|
||||||
|
|
||||||
|
protected:
|
||||||
|
/**
|
||||||
|
* @brief If user do not set --rnn_use_batch=true, it will
|
||||||
|
* compute rnn forward one sequence by one sequence in default.
|
||||||
|
* @param batchSize Total words number of all samples in this batch.
|
||||||
|
* @param numSequences The sample number.
|
||||||
|
* @param starts Each start position of each samples.
|
||||||
|
*/
|
||||||
|
void forwardSequence(int batchSize, size_t numSequences, const int* starts);
|
||||||
|
/**
|
||||||
|
* @brief Compute rnn forward by one sequence.
|
||||||
|
* @param start The start position of this sequence (or sample).
|
||||||
|
* @param length The length of this sequence (or sample), namely the words
|
||||||
|
* number of this sequence.
|
||||||
|
*/
|
||||||
|
void forwardOneSequence(int start, int length);
|
||||||
|
/**
|
||||||
|
* @brief Compute rnn backward one sequence by onesequence.
|
||||||
|
* @param batchSize Total words number of all samples in this batch.
|
||||||
|
* @param numSequences The sample number.
|
||||||
|
* @param starts Each start position of each samples.
|
||||||
|
*/
|
||||||
|
void backwardSequence(int batchSize, size_t numSequences, const int* starts);
|
||||||
|
/**
|
||||||
|
* @brief Compute rnn backward by one sequence.
|
||||||
|
* @param start The start position of this sequence (or sample).
|
||||||
|
* @param length The length of this sequence (or sample), namely the words
|
||||||
|
* number of this sequence.
|
||||||
|
*/
|
||||||
|
void backwardOneSequence(int start, int length);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Reorganize input into batches and compute rnn forward batch
|
||||||
|
* by batch. It will convert batch shape to sequence after finishing forward.
|
||||||
|
* The batch info can refer to SequenceToBatch class.
|
||||||
|
* @param batchSize Total words number of all samples in this batch.
|
||||||
|
* @param numSequences The sample number.
|
||||||
|
* @param starts Each start position of each samples.
|
||||||
|
*/
|
||||||
|
virtual void forwardBatch(int batchSize,
|
||||||
|
size_t numSequences,
|
||||||
|
const int* starts);
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Reorganize input into batches and compute rnn forward batch
|
||||||
|
* by batch.
|
||||||
|
* @param batchSize Total words number of all samples in this batch.
|
||||||
|
* @param numSequences The sample number.
|
||||||
|
* @param starts Each start position of each samples.
|
||||||
|
*/
|
||||||
|
virtual void backwardBatch(int batchSize,
|
||||||
|
size_t numSequences,
|
||||||
|
const int* starts);
|
||||||
|
|
||||||
|
protected:
|
||||||
|
std::unique_ptr<Weight> weight_;
|
||||||
|
std::unique_ptr<Weight> bias_;
|
||||||
|
|
||||||
|
/// frameOutput_[i] is used to hold the i-th sample of output_
|
||||||
|
std::vector<Argument> frameOutput_;
|
||||||
|
MatrixPtr prevOutput_;
|
||||||
|
/// Whether compute rnn by reverse.
|
||||||
|
bool reversed_;
|
||||||
|
/// If compute batch by batch, batchValue_ will be used to save the
|
||||||
|
/// reorganized input value.
|
||||||
|
std::unique_ptr<SequenceToBatch> batchValue_;
|
||||||
|
/// If compute batch by batch, batchGrad_ will be used to save the
|
||||||
|
/// gradient with respect to reorganized input value.
|
||||||
|
std::unique_ptr<SequenceToBatch> batchGrad_;
|
||||||
|
};
|
||||||
|
|
||||||
|
} // namespace paddle
|
Loading…
Reference in new issue